mirror of
https://gitclone.com/github.com/MetaCubeX/Clash.Meta
synced 2024-11-14 21:31:16 +08:00
chore: merge some quic-go fix
This commit is contained in:
parent
dbaee284e4
commit
4e3cd01aad
8
go.mod
8
go.mod
@ -19,8 +19,8 @@ require (
|
||||
github.com/lunixbochs/struc v0.0.0-20200707160740-784aaebc1d40
|
||||
github.com/mdlayher/netlink v1.7.2
|
||||
github.com/metacubex/gopacket v1.1.20-0.20230608035415-7e2f98a3e759
|
||||
github.com/metacubex/quic-go v0.39.1-0.20230930051114-b486c7799a55
|
||||
github.com/metacubex/sing-quic v0.0.0-20230930052455-ae588c275b9c
|
||||
github.com/metacubex/quic-go v0.39.1-0.20231001052253-5776efe31623
|
||||
github.com/metacubex/sing-quic v0.0.0-20230926004739-7c7c534c2255
|
||||
github.com/metacubex/sing-shadowsocks v0.2.5
|
||||
github.com/metacubex/sing-shadowsocks2 v0.1.4
|
||||
github.com/metacubex/sing-tun v0.1.13-0.20230926010214-4e9d1add2aee
|
||||
@ -32,7 +32,7 @@ require (
|
||||
github.com/oschwald/maxminddb-golang v1.12.0
|
||||
github.com/puzpuzpuz/xsync/v2 v2.5.0
|
||||
github.com/sagernet/netlink v0.0.0-20220905062125-8043b4a9aa97
|
||||
github.com/sagernet/sing v0.2.11
|
||||
github.com/sagernet/sing v0.2.12
|
||||
github.com/sagernet/sing-mux v0.1.3
|
||||
github.com/sagernet/sing-shadowtls v0.1.4
|
||||
github.com/sagernet/tfo-go v0.0.0-20230816093905-5a5c285d44a6
|
||||
@ -105,4 +105,4 @@ require (
|
||||
golang.org/x/tools v0.13.0 // indirect
|
||||
)
|
||||
|
||||
replace github.com/sagernet/sing => github.com/metacubex/sing v0.0.0-20230926010351-b23b466642d1
|
||||
replace github.com/sagernet/sing => github.com/metacubex/sing v0.0.0-20231001053806-1230641572b9
|
||||
|
12
go.sum
12
go.sum
@ -93,12 +93,12 @@ github.com/metacubex/gopacket v1.1.20-0.20230608035415-7e2f98a3e759 h1:cjd4biTvO
|
||||
github.com/metacubex/gopacket v1.1.20-0.20230608035415-7e2f98a3e759/go.mod h1:UHOv2xu+RIgLwpXca7TLrXleEd4oR3sPatW6IF8wU88=
|
||||
github.com/metacubex/gvisor v0.0.0-20230611153922-78842f086475 h1:qSEOvPPaMrWggFyFhFYGyMR8i1HKyhXjdi1QYUAa2ww=
|
||||
github.com/metacubex/gvisor v0.0.0-20230611153922-78842f086475/go.mod h1:wehEpqiogdeyncfhckJP5gD2LtBgJW0wnDC24mJ+8Jg=
|
||||
github.com/metacubex/quic-go v0.39.1-0.20230930051114-b486c7799a55 h1:cAqp0BFOTr/1TpFicH1dA1q/6fp7E/JkqHBORfohqr4=
|
||||
github.com/metacubex/quic-go v0.39.1-0.20230930051114-b486c7799a55/go.mod h1:4pe6cY+nAMFU/Uxn1rfnxNIowsaJGDQ3uyy4VuiPkP4=
|
||||
github.com/metacubex/sing v0.0.0-20230926010351-b23b466642d1 h1:MkYAvDyhb7cwuqL4ZLKU3Oi6tYjFnz1sz5LS82JmtDo=
|
||||
github.com/metacubex/sing v0.0.0-20230926010351-b23b466642d1/go.mod h1:GQ673iPfUnkbK/dIPkfd1Xh1MjOGo36gkl/mkiHY7Jg=
|
||||
github.com/metacubex/sing-quic v0.0.0-20230930052455-ae588c275b9c h1:j7PKIUUhOAxJaLf/NmUKuIs9R06xNoYizwYgqf5HSrA=
|
||||
github.com/metacubex/sing-quic v0.0.0-20230930052455-ae588c275b9c/go.mod h1:TPAXFCHCtzW9Dm+wq1l1R/p0v/S/xmuRU0qfPR7WlOA=
|
||||
github.com/metacubex/quic-go v0.39.1-0.20231001052253-5776efe31623 h1:lxXUXdS2GB4Ktn3ocnzQ53v1lqd6LYYfYIKICugTaJM=
|
||||
github.com/metacubex/quic-go v0.39.1-0.20231001052253-5776efe31623/go.mod h1:4pe6cY+nAMFU/Uxn1rfnxNIowsaJGDQ3uyy4VuiPkP4=
|
||||
github.com/metacubex/sing v0.0.0-20231001053806-1230641572b9 h1:F0+IuW0tZ96QHEmrebXAdYnz7ab7Gz4l5yYC4g6Cg8k=
|
||||
github.com/metacubex/sing v0.0.0-20231001053806-1230641572b9/go.mod h1:GQ673iPfUnkbK/dIPkfd1Xh1MjOGo36gkl/mkiHY7Jg=
|
||||
github.com/metacubex/sing-quic v0.0.0-20230926004739-7c7c534c2255 h1:NfdM4hDFIhq9QxDStJ9Rz1h73sRUO/2L4pRZ6lGWRz8=
|
||||
github.com/metacubex/sing-quic v0.0.0-20230926004739-7c7c534c2255/go.mod h1:asoMecRyaA6pLSLVR+qFdp/vD24m8KZ1O/QDxWa7RsM=
|
||||
github.com/metacubex/sing-shadowsocks v0.2.5 h1:O2RRSHlKGEpAVG/OHJQxyHqDy8uvvdCW/oW2TDBOIhc=
|
||||
github.com/metacubex/sing-shadowsocks v0.2.5/go.mod h1:Xz2uW9BEYGEoA8B4XEpoxt7ERHClFCwsMAvWaruoyMo=
|
||||
github.com/metacubex/sing-shadowsocks2 v0.1.4 h1:OOCf8lgsVcpTOJUeaFAMzyKVebaQOBnKirDdUdBoKIE=
|
||||
|
@ -100,10 +100,6 @@ func (b *BrutalSender) OnCongestionEvent(number congestion.PacketNumber, lostByt
|
||||
b.updateAckRate(currentTimestamp)
|
||||
}
|
||||
|
||||
func (b *BrutalSender) OnCongestionEventEx(priorInFlight congestion.ByteCount, eventTime time.Time, ackedPackets []congestion.AckedPacketInfo, lostPackets []congestion.LostPacketInfo) {
|
||||
// Stub
|
||||
}
|
||||
|
||||
func (b *BrutalSender) SetMaxDatagramSize(size congestion.ByteCount) {
|
||||
b.maxDatagramSize = size
|
||||
b.pacer.SetMaxDatagramSize(size)
|
||||
|
@ -18,6 +18,22 @@ func SetCongestionController(quicConn quic.Connection, cc string, cwnd int) {
|
||||
cwnd = 32
|
||||
}
|
||||
switch cc {
|
||||
case "cubic":
|
||||
quicConn.SetCongestionControl(
|
||||
congestion.NewCubicSender(
|
||||
congestion.DefaultClock{},
|
||||
congestion.GetInitialPacketSize(quicConn.RemoteAddr()),
|
||||
false,
|
||||
),
|
||||
)
|
||||
case "new_reno":
|
||||
quicConn.SetCongestionControl(
|
||||
congestion.NewCubicSender(
|
||||
congestion.DefaultClock{},
|
||||
congestion.GetInitialPacketSize(quicConn.RemoteAddr()),
|
||||
true,
|
||||
),
|
||||
)
|
||||
case "bbr_meta_v1":
|
||||
quicConn.SetCongestionControl(
|
||||
congestion.NewBBRSender(
|
||||
|
213
transport/tuic/congestion/cubic.go
Normal file
213
transport/tuic/congestion/cubic.go
Normal file
@ -0,0 +1,213 @@
|
||||
package congestion
|
||||
|
||||
import (
|
||||
"math"
|
||||
"time"
|
||||
|
||||
"github.com/metacubex/quic-go/congestion"
|
||||
)
|
||||
|
||||
// This cubic implementation is based on the one found in Chromiums's QUIC
|
||||
// implementation, in the files net/quic/congestion_control/cubic.{hh,cc}.
|
||||
|
||||
// Constants based on TCP defaults.
|
||||
// The following constants are in 2^10 fractions of a second instead of ms to
|
||||
// allow a 10 shift right to divide.
|
||||
|
||||
// 1024*1024^3 (first 1024 is from 0.100^3)
|
||||
// where 0.100 is 100 ms which is the scaling round trip time.
|
||||
const (
|
||||
cubeScale = 40
|
||||
cubeCongestionWindowScale = 410
|
||||
cubeFactor congestion.ByteCount = 1 << cubeScale / cubeCongestionWindowScale / maxDatagramSize
|
||||
// TODO: when re-enabling cubic, make sure to use the actual packet size here
|
||||
maxDatagramSize = congestion.ByteCount(InitialPacketSizeIPv4)
|
||||
)
|
||||
|
||||
const defaultNumConnections = 1
|
||||
|
||||
// Default Cubic backoff factor
|
||||
const beta float32 = 0.7
|
||||
|
||||
// Additional backoff factor when loss occurs in the concave part of the Cubic
|
||||
// curve. This additional backoff factor is expected to give up bandwidth to
|
||||
// new concurrent flows and speed up convergence.
|
||||
const betaLastMax float32 = 0.85
|
||||
|
||||
// Cubic implements the cubic algorithm from TCP
|
||||
type Cubic struct {
|
||||
clock Clock
|
||||
|
||||
// Number of connections to simulate.
|
||||
numConnections int
|
||||
|
||||
// Time when this cycle started, after last loss event.
|
||||
epoch time.Time
|
||||
|
||||
// Max congestion window used just before last loss event.
|
||||
// Note: to improve fairness to other streams an additional back off is
|
||||
// applied to this value if the new value is below our latest value.
|
||||
lastMaxCongestionWindow congestion.ByteCount
|
||||
|
||||
// Number of acked bytes since the cycle started (epoch).
|
||||
ackedBytesCount congestion.ByteCount
|
||||
|
||||
// TCP Reno equivalent congestion window in packets.
|
||||
estimatedTCPcongestionWindow congestion.ByteCount
|
||||
|
||||
// Origin point of cubic function.
|
||||
originPointCongestionWindow congestion.ByteCount
|
||||
|
||||
// Time to origin point of cubic function in 2^10 fractions of a second.
|
||||
timeToOriginPoint uint32
|
||||
|
||||
// Last congestion window in packets computed by cubic function.
|
||||
lastTargetCongestionWindow congestion.ByteCount
|
||||
}
|
||||
|
||||
// NewCubic returns a new Cubic instance
|
||||
func NewCubic(clock Clock) *Cubic {
|
||||
c := &Cubic{
|
||||
clock: clock,
|
||||
numConnections: defaultNumConnections,
|
||||
}
|
||||
c.Reset()
|
||||
return c
|
||||
}
|
||||
|
||||
// Reset is called after a timeout to reset the cubic state
|
||||
func (c *Cubic) Reset() {
|
||||
c.epoch = time.Time{}
|
||||
c.lastMaxCongestionWindow = 0
|
||||
c.ackedBytesCount = 0
|
||||
c.estimatedTCPcongestionWindow = 0
|
||||
c.originPointCongestionWindow = 0
|
||||
c.timeToOriginPoint = 0
|
||||
c.lastTargetCongestionWindow = 0
|
||||
}
|
||||
|
||||
func (c *Cubic) alpha() float32 {
|
||||
// TCPFriendly alpha is described in Section 3.3 of the CUBIC paper. Note that
|
||||
// beta here is a cwnd multiplier, and is equal to 1-beta from the paper.
|
||||
// We derive the equivalent alpha for an N-connection emulation as:
|
||||
b := c.beta()
|
||||
return 3 * float32(c.numConnections) * float32(c.numConnections) * (1 - b) / (1 + b)
|
||||
}
|
||||
|
||||
func (c *Cubic) beta() float32 {
|
||||
// kNConnectionBeta is the backoff factor after loss for our N-connection
|
||||
// emulation, which emulates the effective backoff of an ensemble of N
|
||||
// TCP-Reno connections on a single loss event. The effective multiplier is
|
||||
// computed as:
|
||||
return (float32(c.numConnections) - 1 + beta) / float32(c.numConnections)
|
||||
}
|
||||
|
||||
func (c *Cubic) betaLastMax() float32 {
|
||||
// betaLastMax is the additional backoff factor after loss for our
|
||||
// N-connection emulation, which emulates the additional backoff of
|
||||
// an ensemble of N TCP-Reno connections on a single loss event. The
|
||||
// effective multiplier is computed as:
|
||||
return (float32(c.numConnections) - 1 + betaLastMax) / float32(c.numConnections)
|
||||
}
|
||||
|
||||
// OnApplicationLimited is called on ack arrival when sender is unable to use
|
||||
// the available congestion window. Resets Cubic state during quiescence.
|
||||
func (c *Cubic) OnApplicationLimited() {
|
||||
// When sender is not using the available congestion window, the window does
|
||||
// not grow. But to be RTT-independent, Cubic assumes that the sender has been
|
||||
// using the entire window during the time since the beginning of the current
|
||||
// "epoch" (the end of the last loss recovery period). Since
|
||||
// application-limited periods break this assumption, we reset the epoch when
|
||||
// in such a period. This reset effectively freezes congestion window growth
|
||||
// through application-limited periods and allows Cubic growth to continue
|
||||
// when the entire window is being used.
|
||||
c.epoch = time.Time{}
|
||||
}
|
||||
|
||||
// CongestionWindowAfterPacketLoss computes a new congestion window to use after
|
||||
// a loss event. Returns the new congestion window in packets. The new
|
||||
// congestion window is a multiplicative decrease of our current window.
|
||||
func (c *Cubic) CongestionWindowAfterPacketLoss(currentCongestionWindow congestion.ByteCount) congestion.ByteCount {
|
||||
if currentCongestionWindow+maxDatagramSize < c.lastMaxCongestionWindow {
|
||||
// We never reached the old max, so assume we are competing with another
|
||||
// flow. Use our extra back off factor to allow the other flow to go up.
|
||||
c.lastMaxCongestionWindow = congestion.ByteCount(c.betaLastMax() * float32(currentCongestionWindow))
|
||||
} else {
|
||||
c.lastMaxCongestionWindow = currentCongestionWindow
|
||||
}
|
||||
c.epoch = time.Time{} // Reset time.
|
||||
return congestion.ByteCount(float32(currentCongestionWindow) * c.beta())
|
||||
}
|
||||
|
||||
// CongestionWindowAfterAck computes a new congestion window to use after a received ACK.
|
||||
// Returns the new congestion window in packets. The new congestion window
|
||||
// follows a cubic function that depends on the time passed since last
|
||||
// packet loss.
|
||||
func (c *Cubic) CongestionWindowAfterAck(
|
||||
ackedBytes congestion.ByteCount,
|
||||
currentCongestionWindow congestion.ByteCount,
|
||||
delayMin time.Duration,
|
||||
eventTime time.Time,
|
||||
) congestion.ByteCount {
|
||||
c.ackedBytesCount += ackedBytes
|
||||
|
||||
if c.epoch.IsZero() {
|
||||
// First ACK after a loss event.
|
||||
c.epoch = eventTime // Start of epoch.
|
||||
c.ackedBytesCount = ackedBytes // Reset count.
|
||||
// Reset estimated_tcp_congestion_window_ to be in sync with cubic.
|
||||
c.estimatedTCPcongestionWindow = currentCongestionWindow
|
||||
if c.lastMaxCongestionWindow <= currentCongestionWindow {
|
||||
c.timeToOriginPoint = 0
|
||||
c.originPointCongestionWindow = currentCongestionWindow
|
||||
} else {
|
||||
c.timeToOriginPoint = uint32(math.Cbrt(float64(cubeFactor * (c.lastMaxCongestionWindow - currentCongestionWindow))))
|
||||
c.originPointCongestionWindow = c.lastMaxCongestionWindow
|
||||
}
|
||||
}
|
||||
|
||||
// Change the time unit from microseconds to 2^10 fractions per second. Take
|
||||
// the round trip time in account. This is done to allow us to use shift as a
|
||||
// divide operator.
|
||||
elapsedTime := int64(eventTime.Add(delayMin).Sub(c.epoch)/time.Microsecond) << 10 / (1000 * 1000)
|
||||
|
||||
// Right-shifts of negative, signed numbers have implementation-dependent
|
||||
// behavior, so force the offset to be positive, as is done in the kernel.
|
||||
offset := int64(c.timeToOriginPoint) - elapsedTime
|
||||
if offset < 0 {
|
||||
offset = -offset
|
||||
}
|
||||
|
||||
deltaCongestionWindow := congestion.ByteCount(cubeCongestionWindowScale*offset*offset*offset) * maxDatagramSize >> cubeScale
|
||||
var targetCongestionWindow congestion.ByteCount
|
||||
if elapsedTime > int64(c.timeToOriginPoint) {
|
||||
targetCongestionWindow = c.originPointCongestionWindow + deltaCongestionWindow
|
||||
} else {
|
||||
targetCongestionWindow = c.originPointCongestionWindow - deltaCongestionWindow
|
||||
}
|
||||
// Limit the CWND increase to half the acked bytes.
|
||||
targetCongestionWindow = Min(targetCongestionWindow, currentCongestionWindow+c.ackedBytesCount/2)
|
||||
|
||||
// Increase the window by approximately Alpha * 1 MSS of bytes every
|
||||
// time we ack an estimated tcp window of bytes. For small
|
||||
// congestion windows (less than 25), the formula below will
|
||||
// increase slightly slower than linearly per estimated tcp window
|
||||
// of bytes.
|
||||
c.estimatedTCPcongestionWindow += congestion.ByteCount(float32(c.ackedBytesCount) * c.alpha() * float32(maxDatagramSize) / float32(c.estimatedTCPcongestionWindow))
|
||||
c.ackedBytesCount = 0
|
||||
|
||||
// We have a new cubic congestion window.
|
||||
c.lastTargetCongestionWindow = targetCongestionWindow
|
||||
|
||||
// Compute target congestion_window based on cubic target and estimated TCP
|
||||
// congestion_window, use highest (fastest).
|
||||
if targetCongestionWindow < c.estimatedTCPcongestionWindow {
|
||||
targetCongestionWindow = c.estimatedTCPcongestionWindow
|
||||
}
|
||||
return targetCongestionWindow
|
||||
}
|
||||
|
||||
// SetNumConnections sets the number of emulated connections
|
||||
func (c *Cubic) SetNumConnections(n int) {
|
||||
c.numConnections = n
|
||||
}
|
297
transport/tuic/congestion/cubic_sender.go
Normal file
297
transport/tuic/congestion/cubic_sender.go
Normal file
@ -0,0 +1,297 @@
|
||||
package congestion
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"time"
|
||||
|
||||
"github.com/metacubex/quic-go/congestion"
|
||||
)
|
||||
|
||||
const (
|
||||
maxBurstPackets = 3
|
||||
renoBeta = 0.7 // Reno backoff factor.
|
||||
minCongestionWindowPackets = 2
|
||||
initialCongestionWindow = 32
|
||||
)
|
||||
|
||||
const InvalidPacketNumber congestion.PacketNumber = -1
|
||||
const MaxCongestionWindowPackets = 20000
|
||||
const MaxByteCount = congestion.ByteCount(1<<62 - 1)
|
||||
|
||||
type cubicSender struct {
|
||||
hybridSlowStart HybridSlowStart
|
||||
rttStats congestion.RTTStatsProvider
|
||||
cubic *Cubic
|
||||
pacer *pacer
|
||||
clock Clock
|
||||
|
||||
reno bool
|
||||
|
||||
// Track the largest packet that has been sent.
|
||||
largestSentPacketNumber congestion.PacketNumber
|
||||
|
||||
// Track the largest packet that has been acked.
|
||||
largestAckedPacketNumber congestion.PacketNumber
|
||||
|
||||
// Track the largest packet number outstanding when a CWND cutback occurs.
|
||||
largestSentAtLastCutback congestion.PacketNumber
|
||||
|
||||
// Whether the last loss event caused us to exit slowstart.
|
||||
// Used for stats collection of slowstartPacketsLost
|
||||
lastCutbackExitedSlowstart bool
|
||||
|
||||
// Congestion window in bytes.
|
||||
congestionWindow congestion.ByteCount
|
||||
|
||||
// Slow start congestion window in bytes, aka ssthresh.
|
||||
slowStartThreshold congestion.ByteCount
|
||||
|
||||
// ACK counter for the Reno implementation.
|
||||
numAckedPackets uint64
|
||||
|
||||
initialCongestionWindow congestion.ByteCount
|
||||
initialMaxCongestionWindow congestion.ByteCount
|
||||
|
||||
maxDatagramSize congestion.ByteCount
|
||||
}
|
||||
|
||||
var (
|
||||
_ congestion.CongestionControl = &cubicSender{}
|
||||
)
|
||||
|
||||
// NewCubicSender makes a new cubic sender
|
||||
func NewCubicSender(
|
||||
clock Clock,
|
||||
initialMaxDatagramSize congestion.ByteCount,
|
||||
reno bool,
|
||||
) *cubicSender {
|
||||
return newCubicSender(
|
||||
clock,
|
||||
reno,
|
||||
initialMaxDatagramSize,
|
||||
initialCongestionWindow*initialMaxDatagramSize,
|
||||
MaxCongestionWindowPackets*initialMaxDatagramSize,
|
||||
)
|
||||
}
|
||||
|
||||
func newCubicSender(
|
||||
clock Clock,
|
||||
reno bool,
|
||||
initialMaxDatagramSize,
|
||||
initialCongestionWindow,
|
||||
initialMaxCongestionWindow congestion.ByteCount,
|
||||
) *cubicSender {
|
||||
c := &cubicSender{
|
||||
largestSentPacketNumber: InvalidPacketNumber,
|
||||
largestAckedPacketNumber: InvalidPacketNumber,
|
||||
largestSentAtLastCutback: InvalidPacketNumber,
|
||||
initialCongestionWindow: initialCongestionWindow,
|
||||
initialMaxCongestionWindow: initialMaxCongestionWindow,
|
||||
congestionWindow: initialCongestionWindow,
|
||||
slowStartThreshold: MaxByteCount,
|
||||
cubic: NewCubic(clock),
|
||||
clock: clock,
|
||||
reno: reno,
|
||||
maxDatagramSize: initialMaxDatagramSize,
|
||||
}
|
||||
c.pacer = newPacer(c.BandwidthEstimate)
|
||||
return c
|
||||
}
|
||||
|
||||
func (c *cubicSender) SetRTTStatsProvider(provider congestion.RTTStatsProvider) {
|
||||
c.rttStats = provider
|
||||
}
|
||||
|
||||
// TimeUntilSend returns when the next packet should be sent.
|
||||
func (c *cubicSender) TimeUntilSend(_ congestion.ByteCount) time.Time {
|
||||
return c.pacer.TimeUntilSend()
|
||||
}
|
||||
|
||||
func (c *cubicSender) HasPacingBudget(now time.Time) bool {
|
||||
return c.pacer.Budget(now) >= c.maxDatagramSize
|
||||
}
|
||||
|
||||
func (c *cubicSender) maxCongestionWindow() congestion.ByteCount {
|
||||
return c.maxDatagramSize * MaxCongestionWindowPackets
|
||||
}
|
||||
|
||||
func (c *cubicSender) minCongestionWindow() congestion.ByteCount {
|
||||
return c.maxDatagramSize * minCongestionWindowPackets
|
||||
}
|
||||
|
||||
func (c *cubicSender) OnPacketSent(
|
||||
sentTime time.Time,
|
||||
_ congestion.ByteCount,
|
||||
packetNumber congestion.PacketNumber,
|
||||
bytes congestion.ByteCount,
|
||||
isRetransmittable bool,
|
||||
) {
|
||||
c.pacer.SentPacket(sentTime, bytes)
|
||||
if !isRetransmittable {
|
||||
return
|
||||
}
|
||||
c.largestSentPacketNumber = packetNumber
|
||||
c.hybridSlowStart.OnPacketSent(packetNumber)
|
||||
}
|
||||
|
||||
func (c *cubicSender) CanSend(bytesInFlight congestion.ByteCount) bool {
|
||||
return bytesInFlight < c.GetCongestionWindow()
|
||||
}
|
||||
|
||||
func (c *cubicSender) InRecovery() bool {
|
||||
return c.largestAckedPacketNumber != InvalidPacketNumber && c.largestAckedPacketNumber <= c.largestSentAtLastCutback
|
||||
}
|
||||
|
||||
func (c *cubicSender) InSlowStart() bool {
|
||||
return c.GetCongestionWindow() < c.slowStartThreshold
|
||||
}
|
||||
|
||||
func (c *cubicSender) GetCongestionWindow() congestion.ByteCount {
|
||||
return c.congestionWindow
|
||||
}
|
||||
|
||||
func (c *cubicSender) MaybeExitSlowStart() {
|
||||
if c.InSlowStart() &&
|
||||
c.hybridSlowStart.ShouldExitSlowStart(c.rttStats.LatestRTT(), c.rttStats.MinRTT(), c.GetCongestionWindow()/c.maxDatagramSize) {
|
||||
// exit slow start
|
||||
c.slowStartThreshold = c.congestionWindow
|
||||
}
|
||||
}
|
||||
|
||||
func (c *cubicSender) OnPacketAcked(
|
||||
ackedPacketNumber congestion.PacketNumber,
|
||||
ackedBytes congestion.ByteCount,
|
||||
priorInFlight congestion.ByteCount,
|
||||
eventTime time.Time,
|
||||
) {
|
||||
c.largestAckedPacketNumber = Max(ackedPacketNumber, c.largestAckedPacketNumber)
|
||||
if c.InRecovery() {
|
||||
return
|
||||
}
|
||||
c.maybeIncreaseCwnd(ackedPacketNumber, ackedBytes, priorInFlight, eventTime)
|
||||
if c.InSlowStart() {
|
||||
c.hybridSlowStart.OnPacketAcked(ackedPacketNumber)
|
||||
}
|
||||
}
|
||||
|
||||
func (c *cubicSender) OnCongestionEvent(packetNumber congestion.PacketNumber, lostBytes, priorInFlight congestion.ByteCount) {
|
||||
// TCP NewReno (RFC6582) says that once a loss occurs, any losses in packets
|
||||
// already sent should be treated as a single loss event, since it's expected.
|
||||
if packetNumber <= c.largestSentAtLastCutback {
|
||||
return
|
||||
}
|
||||
c.lastCutbackExitedSlowstart = c.InSlowStart()
|
||||
|
||||
if c.reno {
|
||||
c.congestionWindow = congestion.ByteCount(float64(c.congestionWindow) * renoBeta)
|
||||
} else {
|
||||
c.congestionWindow = c.cubic.CongestionWindowAfterPacketLoss(c.congestionWindow)
|
||||
}
|
||||
if minCwnd := c.minCongestionWindow(); c.congestionWindow < minCwnd {
|
||||
c.congestionWindow = minCwnd
|
||||
}
|
||||
c.slowStartThreshold = c.congestionWindow
|
||||
c.largestSentAtLastCutback = c.largestSentPacketNumber
|
||||
// reset packet count from congestion avoidance mode. We start
|
||||
// counting again when we're out of recovery.
|
||||
c.numAckedPackets = 0
|
||||
}
|
||||
|
||||
func (b *cubicSender) OnCongestionEventEx(priorInFlight congestion.ByteCount, eventTime time.Time, ackedPackets []congestion.AckedPacketInfo, lostPackets []congestion.LostPacketInfo) {
|
||||
// Stub
|
||||
}
|
||||
|
||||
// Called when we receive an ack. Normal TCP tracks how many packets one ack
|
||||
// represents, but quic has a separate ack for each packet.
|
||||
func (c *cubicSender) maybeIncreaseCwnd(
|
||||
_ congestion.PacketNumber,
|
||||
ackedBytes congestion.ByteCount,
|
||||
priorInFlight congestion.ByteCount,
|
||||
eventTime time.Time,
|
||||
) {
|
||||
// Do not increase the congestion window unless the sender is close to using
|
||||
// the current window.
|
||||
if !c.isCwndLimited(priorInFlight) {
|
||||
c.cubic.OnApplicationLimited()
|
||||
return
|
||||
}
|
||||
if c.congestionWindow >= c.maxCongestionWindow() {
|
||||
return
|
||||
}
|
||||
if c.InSlowStart() {
|
||||
// TCP slow start, exponential growth, increase by one for each ACK.
|
||||
c.congestionWindow += c.maxDatagramSize
|
||||
return
|
||||
}
|
||||
// Congestion avoidance
|
||||
if c.reno {
|
||||
// Classic Reno congestion avoidance.
|
||||
c.numAckedPackets++
|
||||
if c.numAckedPackets >= uint64(c.congestionWindow/c.maxDatagramSize) {
|
||||
c.congestionWindow += c.maxDatagramSize
|
||||
c.numAckedPackets = 0
|
||||
}
|
||||
} else {
|
||||
c.congestionWindow = Min(c.maxCongestionWindow(), c.cubic.CongestionWindowAfterAck(ackedBytes, c.congestionWindow, c.rttStats.MinRTT(), eventTime))
|
||||
}
|
||||
}
|
||||
|
||||
func (c *cubicSender) isCwndLimited(bytesInFlight congestion.ByteCount) bool {
|
||||
congestionWindow := c.GetCongestionWindow()
|
||||
if bytesInFlight >= congestionWindow {
|
||||
return true
|
||||
}
|
||||
availableBytes := congestionWindow - bytesInFlight
|
||||
slowStartLimited := c.InSlowStart() && bytesInFlight > congestionWindow/2
|
||||
return slowStartLimited || availableBytes <= maxBurstPackets*c.maxDatagramSize
|
||||
}
|
||||
|
||||
// BandwidthEstimate returns the current bandwidth estimate
|
||||
func (c *cubicSender) BandwidthEstimate() Bandwidth {
|
||||
if c.rttStats == nil {
|
||||
return infBandwidth
|
||||
}
|
||||
srtt := c.rttStats.SmoothedRTT()
|
||||
if srtt == 0 {
|
||||
// If we haven't measured an rtt, the bandwidth estimate is unknown.
|
||||
return infBandwidth
|
||||
}
|
||||
return BandwidthFromDelta(c.GetCongestionWindow(), srtt)
|
||||
}
|
||||
|
||||
// OnRetransmissionTimeout is called on an retransmission timeout
|
||||
func (c *cubicSender) OnRetransmissionTimeout(packetsRetransmitted bool) {
|
||||
c.largestSentAtLastCutback = InvalidPacketNumber
|
||||
if !packetsRetransmitted {
|
||||
return
|
||||
}
|
||||
c.hybridSlowStart.Restart()
|
||||
c.cubic.Reset()
|
||||
c.slowStartThreshold = c.congestionWindow / 2
|
||||
c.congestionWindow = c.minCongestionWindow()
|
||||
}
|
||||
|
||||
// OnConnectionMigration is called when the connection is migrated (?)
|
||||
func (c *cubicSender) OnConnectionMigration() {
|
||||
c.hybridSlowStart.Restart()
|
||||
c.largestSentPacketNumber = InvalidPacketNumber
|
||||
c.largestAckedPacketNumber = InvalidPacketNumber
|
||||
c.largestSentAtLastCutback = InvalidPacketNumber
|
||||
c.lastCutbackExitedSlowstart = false
|
||||
c.cubic.Reset()
|
||||
c.numAckedPackets = 0
|
||||
c.congestionWindow = c.initialCongestionWindow
|
||||
c.slowStartThreshold = c.initialMaxCongestionWindow
|
||||
}
|
||||
|
||||
func (c *cubicSender) SetMaxDatagramSize(s congestion.ByteCount) {
|
||||
if s < c.maxDatagramSize {
|
||||
panic(fmt.Sprintf("congestion BUG: decreased max datagram size from %d to %d", c.maxDatagramSize, s))
|
||||
}
|
||||
cwndIsMinCwnd := c.congestionWindow == c.minCongestionWindow()
|
||||
c.maxDatagramSize = s
|
||||
if cwndIsMinCwnd {
|
||||
c.congestionWindow = c.minCongestionWindow()
|
||||
}
|
||||
c.pacer.SetMaxDatagramSize(s)
|
||||
}
|
112
transport/tuic/congestion/hybrid_slow_start.go
Normal file
112
transport/tuic/congestion/hybrid_slow_start.go
Normal file
@ -0,0 +1,112 @@
|
||||
package congestion
|
||||
|
||||
import (
|
||||
"time"
|
||||
|
||||
"github.com/metacubex/quic-go/congestion"
|
||||
)
|
||||
|
||||
// Note(pwestin): the magic clamping numbers come from the original code in
|
||||
// tcp_cubic.c.
|
||||
const hybridStartLowWindow = congestion.ByteCount(16)
|
||||
|
||||
// Number of delay samples for detecting the increase of delay.
|
||||
const hybridStartMinSamples = uint32(8)
|
||||
|
||||
// Exit slow start if the min rtt has increased by more than 1/8th.
|
||||
const hybridStartDelayFactorExp = 3 // 2^3 = 8
|
||||
// The original paper specifies 2 and 8ms, but those have changed over time.
|
||||
const (
|
||||
hybridStartDelayMinThresholdUs = int64(4000)
|
||||
hybridStartDelayMaxThresholdUs = int64(16000)
|
||||
)
|
||||
|
||||
// HybridSlowStart implements the TCP hybrid slow start algorithm
|
||||
type HybridSlowStart struct {
|
||||
endPacketNumber congestion.PacketNumber
|
||||
lastSentPacketNumber congestion.PacketNumber
|
||||
started bool
|
||||
currentMinRTT time.Duration
|
||||
rttSampleCount uint32
|
||||
hystartFound bool
|
||||
}
|
||||
|
||||
// StartReceiveRound is called for the start of each receive round (burst) in the slow start phase.
|
||||
func (s *HybridSlowStart) StartReceiveRound(lastSent congestion.PacketNumber) {
|
||||
s.endPacketNumber = lastSent
|
||||
s.currentMinRTT = 0
|
||||
s.rttSampleCount = 0
|
||||
s.started = true
|
||||
}
|
||||
|
||||
// IsEndOfRound returns true if this ack is the last packet number of our current slow start round.
|
||||
func (s *HybridSlowStart) IsEndOfRound(ack congestion.PacketNumber) bool {
|
||||
return s.endPacketNumber < ack
|
||||
}
|
||||
|
||||
// ShouldExitSlowStart should be called on every new ack frame, since a new
|
||||
// RTT measurement can be made then.
|
||||
// rtt: the RTT for this ack packet.
|
||||
// minRTT: is the lowest delay (RTT) we have seen during the session.
|
||||
// congestionWindow: the congestion window in packets.
|
||||
func (s *HybridSlowStart) ShouldExitSlowStart(latestRTT time.Duration, minRTT time.Duration, congestionWindow congestion.ByteCount) bool {
|
||||
if !s.started {
|
||||
// Time to start the hybrid slow start.
|
||||
s.StartReceiveRound(s.lastSentPacketNumber)
|
||||
}
|
||||
if s.hystartFound {
|
||||
return true
|
||||
}
|
||||
// Second detection parameter - delay increase detection.
|
||||
// Compare the minimum delay (s.currentMinRTT) of the current
|
||||
// burst of packets relative to the minimum delay during the session.
|
||||
// Note: we only look at the first few(8) packets in each burst, since we
|
||||
// only want to compare the lowest RTT of the burst relative to previous
|
||||
// bursts.
|
||||
s.rttSampleCount++
|
||||
if s.rttSampleCount <= hybridStartMinSamples {
|
||||
if s.currentMinRTT == 0 || s.currentMinRTT > latestRTT {
|
||||
s.currentMinRTT = latestRTT
|
||||
}
|
||||
}
|
||||
// We only need to check this once per round.
|
||||
if s.rttSampleCount == hybridStartMinSamples {
|
||||
// Divide minRTT by 8 to get a rtt increase threshold for exiting.
|
||||
minRTTincreaseThresholdUs := int64(minRTT / time.Microsecond >> hybridStartDelayFactorExp)
|
||||
// Ensure the rtt threshold is never less than 2ms or more than 16ms.
|
||||
minRTTincreaseThresholdUs = Min(minRTTincreaseThresholdUs, hybridStartDelayMaxThresholdUs)
|
||||
minRTTincreaseThreshold := time.Duration(Max(minRTTincreaseThresholdUs, hybridStartDelayMinThresholdUs)) * time.Microsecond
|
||||
|
||||
if s.currentMinRTT > (minRTT + minRTTincreaseThreshold) {
|
||||
s.hystartFound = true
|
||||
}
|
||||
}
|
||||
// Exit from slow start if the cwnd is greater than 16 and
|
||||
// increasing delay is found.
|
||||
return congestionWindow >= hybridStartLowWindow && s.hystartFound
|
||||
}
|
||||
|
||||
// OnPacketSent is called when a packet was sent
|
||||
func (s *HybridSlowStart) OnPacketSent(packetNumber congestion.PacketNumber) {
|
||||
s.lastSentPacketNumber = packetNumber
|
||||
}
|
||||
|
||||
// OnPacketAcked gets invoked after ShouldExitSlowStart, so it's best to end
|
||||
// the round when the final packet of the burst is received and start it on
|
||||
// the next incoming ack.
|
||||
func (s *HybridSlowStart) OnPacketAcked(ackedPacketNumber congestion.PacketNumber) {
|
||||
if s.IsEndOfRound(ackedPacketNumber) {
|
||||
s.started = false
|
||||
}
|
||||
}
|
||||
|
||||
// Started returns true if started
|
||||
func (s *HybridSlowStart) Started() bool {
|
||||
return s.started
|
||||
}
|
||||
|
||||
// Restart the slow start phase
|
||||
func (s *HybridSlowStart) Restart() {
|
||||
s.started = false
|
||||
s.hystartFound = false
|
||||
}
|
56
transport/tuic/congestion/minmax.go
Normal file
56
transport/tuic/congestion/minmax.go
Normal file
@ -0,0 +1,56 @@
|
||||
package congestion
|
||||
|
||||
import (
|
||||
"math"
|
||||
"time"
|
||||
)
|
||||
|
||||
// InfDuration is a duration of infinite length
|
||||
const InfDuration = time.Duration(math.MaxInt64)
|
||||
|
||||
// MinNonZeroDuration return the minimum duration that's not zero.
|
||||
func MinNonZeroDuration(a, b time.Duration) time.Duration {
|
||||
if a == 0 {
|
||||
return b
|
||||
}
|
||||
if b == 0 {
|
||||
return a
|
||||
}
|
||||
return Min(a, b)
|
||||
}
|
||||
|
||||
// AbsDuration returns the absolute value of a time duration
|
||||
func AbsDuration(d time.Duration) time.Duration {
|
||||
if d >= 0 {
|
||||
return d
|
||||
}
|
||||
return -d
|
||||
}
|
||||
|
||||
// MinTime returns the earlier time
|
||||
func MinTime(a, b time.Time) time.Time {
|
||||
if a.After(b) {
|
||||
return b
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
// MinNonZeroTime returns the earlist time that is not time.Time{}
|
||||
// If both a and b are time.Time{}, it returns time.Time{}
|
||||
func MinNonZeroTime(a, b time.Time) time.Time {
|
||||
if a.IsZero() {
|
||||
return b
|
||||
}
|
||||
if b.IsZero() {
|
||||
return a
|
||||
}
|
||||
return MinTime(a, b)
|
||||
}
|
||||
|
||||
// MaxTime returns the later time
|
||||
func MaxTime(a, b time.Time) time.Time {
|
||||
if a.After(b) {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
Loading…
Reference in New Issue
Block a user