package sniffer import ( "crypto" "crypto/aes" "crypto/cipher" "encoding/binary" "io" "sync" "time" "github.com/metacubex/mihomo/common/buf" "github.com/metacubex/mihomo/constant" "github.com/metacubex/quic-go/quicvarint" "golang.org/x/crypto/hkdf" ) type quicDataBlock struct { offset uint64 length uint64 data []byte } var _ constant.PacketSender = (*quicConnection)(nil) type quicConnection struct { lock sync.RWMutex buffer []quicDataBlock sender constant.PacketSender result string override bool chClose chan struct{} closed bool } func (conn *quicConnection) TryAssemble() error { conn.lock.RLock() if conn.buffer == nil { conn.lock.RUnlock() return nil } var frameLen uint64 for _, fragment := range conn.buffer { frameLen += fragment.length } buffer := buf.NewSize(int(frameLen)) var index uint64 var length int loop: for { for _, fragment := range conn.buffer { if fragment.offset == index { buffer.Write(fragment.data) index = fragment.offset + fragment.length length++ continue loop } } break } domain, err := ReadClientHello(buffer.Bytes()) if err != nil { conn.lock.RUnlock() return err } conn.lock.RUnlock() conn.lock.Lock() conn.result = *domain conn.lock.Unlock() conn.close() return err } func (conn *quicConnection) close() { conn.lock.Lock() if !conn.closed { close(conn.chClose) conn.closed = true } conn.lock.Unlock() } // Send will send PacketAdapter nonblocking // the implement must call UDPPacket.Drop() inside Send func (q *quicConnection) Send(current constant.PacketAdapter) { defer q.sender.Send(current) q.lock.RLock() if q.closed { q.lock.RUnlock() return } q.lock.RUnlock() err := q.readQuicData(current.Data()) if err != nil { q.close() return } } // Process is a blocking loop to send PacketAdapter to PacketConn and update the WriteBackProxy func (q *quicConnection) Process(conn constant.PacketConn, proxy constant.WriteBackProxy) { q.sender.Process(conn, proxy) } // ResolveUDP wait sniffer recv all fragments and update the domain func (q *quicConnection) ResolveUDP(data *constant.Metadata) error { select { case <-q.chClose: q.lock.RLock() replaceDomain(data, q.result, q.override) q.lock.RUnlock() break case <-time.After(quicWaitConn): q.close() } return q.sender.ResolveUDP(data) } // Close stop the Process loop func (q *quicConnection) Close() { q.sender.Close() q.close() } func (conn *quicConnection) readQuicData(b []byte) error { buffer := buf.As(b) typeByte, err := buffer.ReadByte() if err != nil { return errNotQuic } isLongHeader := typeByte&0x80 > 0 if !isLongHeader || typeByte&0x40 == 0 { return errNotQuicInitial } vb, err := buffer.ReadBytes(4) if err != nil { return errNotQuic } versionNumber := binary.BigEndian.Uint32(vb) if versionNumber != 0 && typeByte&0x40 == 0 { return errNotQuic } else if versionNumber != versionDraft29 && versionNumber != version1 { return errNotQuic } connIdLen, err := buffer.ReadByte() if err != nil || connIdLen == 0 { return errNotQuic } destConnID := make([]byte, int(connIdLen)) if _, err := io.ReadFull(buffer, destConnID); err != nil { return errNotQuic } packetType := (typeByte & 0x30) >> 4 if packetType != quicPacketTypeInitial { return nil } if l, err := buffer.ReadByte(); err != nil { return errNotQuic } else if _, err := buffer.ReadBytes(int(l)); err != nil { return errNotQuic } tokenLen, err := quicvarint.Read(buffer) if err != nil || tokenLen > uint64(len(b)) { return errNotQuic } if _, err = buffer.ReadBytes(int(tokenLen)); err != nil { return errNotQuic } packetLen, err := quicvarint.Read(buffer) if err != nil { return errNotQuic } hdrLen := len(b) - buffer.Len() var salt []byte if versionNumber == version1 { salt = quicSalt } else { salt = quicSaltOld } initialSecret := hkdf.Extract(crypto.SHA256.New, destConnID, salt) secret := hkdfExpandLabel(crypto.SHA256, initialSecret, []byte{}, "client in", crypto.SHA256.Size()) hpKey := hkdfExpandLabel(crypto.SHA256, secret, []byte{}, "quic hp", 16) block, err := aes.NewCipher(hpKey) if err != nil { return err } cache := buf.NewPacket() defer cache.Release() mask := cache.Extend(block.BlockSize()) block.Encrypt(mask, b[hdrLen+4:hdrLen+4+16]) firstByte := b[0] // Encrypt/decrypt first byte. if isLongHeader { // Long header: 4 bits masked // High 4 bits are not protected. firstByte ^= mask[0] & 0x0f } else { // Short header: 5 bits masked // High 3 bits are not protected. firstByte ^= mask[0] & 0x1f } packetNumberLength := int(firstByte&0x3 + 1) // max = 4 (64-bit sequence number) extHdrLen := hdrLen + packetNumberLength // copy to avoid modify origin data extHdr := cache.Extend(extHdrLen) copy(extHdr, b) extHdr[0] = firstByte packetNumber := extHdr[hdrLen:extHdrLen] // Encrypt/decrypt packet number. for i := range packetNumber { packetNumber[i] ^= mask[1+i] } if int(packetLen)+hdrLen > len(b) || extHdrLen > len(b) { return errNotQuic } data := b[extHdrLen : int(packetLen)+hdrLen] key := hkdfExpandLabel(crypto.SHA256, secret, []byte{}, "quic key", 16) iv := hkdfExpandLabel(crypto.SHA256, secret, []byte{}, "quic iv", 12) aesCipher, err := aes.NewCipher(key) if err != nil { return err } aead, err := cipher.NewGCM(aesCipher) if err != nil { return err } // We only decrypt once, so we do not need to XOR it back. // https://github.com/quic-go/qtls-go1-20/blob/e132a0e6cb45e20ac0b705454849a11d09ba5a54/cipher_suites.go#L496 for i, b := range packetNumber { iv[len(iv)-len(packetNumber)+i] ^= b } dst := cache.Extend(len(data)) decrypted, err := aead.Open(dst[:0], iv, data, extHdr) if err != nil { return err } buffer = buf.As(decrypted) for i := 0; !buffer.IsEmpty(); i++ { frameType := byte(0x0) // Default to PADDING frame for frameType == 0x0 && !buffer.IsEmpty() { frameType, _ = buffer.ReadByte() } switch frameType { case 0x00: // PADDING frame case 0x01: // PING frame case 0x02, 0x03: // ACK frame if _, err = quicvarint.Read(buffer); err != nil { // Field: Largest Acknowledged return io.ErrUnexpectedEOF } if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Delay return io.ErrUnexpectedEOF } ackRangeCount, err := quicvarint.Read(buffer) // Field: ACK Range Count if err != nil { return io.ErrUnexpectedEOF } if _, err = quicvarint.Read(buffer); err != nil { // Field: First ACK Range return io.ErrUnexpectedEOF } for i := 0; i < int(ackRangeCount); i++ { // Field: ACK Range if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Range -> Gap return io.ErrUnexpectedEOF } if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Range -> ACK Range Length return io.ErrUnexpectedEOF } } if frameType == 0x03 { if _, err = quicvarint.Read(buffer); err != nil { // Field: ECN Counts -> ECT0 Count return io.ErrUnexpectedEOF } if _, err = quicvarint.Read(buffer); err != nil { // Field: ECN Counts -> ECT1 Count return io.ErrUnexpectedEOF } if _, err = quicvarint.Read(buffer); err != nil { //nolint:misspell // Field: ECN Counts -> ECT-CE Count return io.ErrUnexpectedEOF } } case 0x06: // CRYPTO frame, we will use this frame offset, err := quicvarint.Read(buffer) // Field: Offset if err != nil { return io.ErrUnexpectedEOF } length, err := quicvarint.Read(buffer) // Field: Length if err != nil || length > uint64(buffer.Len()) { return io.ErrUnexpectedEOF } conn.lock.RLock() if conn.buffer == nil { conn.lock.RUnlock() // sniffDone() was called, return the connection return nil } conn.lock.RUnlock() data = make([]byte, length) if _, err := buffer.Read(data); err != nil { // Field: Crypto Data return io.ErrUnexpectedEOF } conn.lock.Lock() conn.buffer = append(conn.buffer, quicDataBlock{ offset: offset, length: length, data: data, }) conn.lock.Unlock() case 0x1c: // CONNECTION_CLOSE frame, only 0x1c is permitted in initial packet if _, err = quicvarint.Read(buffer); err != nil { // Field: Error Code return io.ErrUnexpectedEOF } if _, err = quicvarint.Read(buffer); err != nil { // Field: Frame Type return io.ErrUnexpectedEOF } length, err := quicvarint.Read(buffer) // Field: Reason Phrase Length if err != nil { return io.ErrUnexpectedEOF } if _, err := buffer.ReadBytes(int(length)); err != nil { // Field: Reason Phrase return io.ErrUnexpectedEOF } default: // Only above frame types are permitted in initial packet. // See https://www.rfc-editor.org/rfc/rfc9000.html#section-17.2.2-8 return errNotQuicInitial } } _ = conn.TryAssemble() return nil }