package config import ( "fmt" "net" "net/netip" "strings" "github.com/metacubex/mihomo/adapter/outboundgroup" "github.com/metacubex/mihomo/common/structure" ) func trimArr(arr []string) (r []string) { for _, e := range arr { r = append(r, strings.Trim(e, " ")) } return } // Check if ProxyGroups form DAG(Directed Acyclic Graph), and sort all ProxyGroups by dependency order. // Meanwhile, record the original index in the config file. // If loop is detected, return an error with location of loop. func proxyGroupsDagSort(groupsConfig []map[string]any) error { type graphNode struct { indegree int // topological order topo int // the original data in `groupsConfig` data map[string]any // `outdegree` and `from` are used in loop locating outdegree int option *outboundgroup.GroupCommonOption from []string } decoder := structure.NewDecoder(structure.Option{TagName: "group", WeaklyTypedInput: true}) graph := make(map[string]*graphNode) // Step 1.1 build dependency graph for _, mapping := range groupsConfig { option := &outboundgroup.GroupCommonOption{} if err := decoder.Decode(mapping, option); err != nil { return fmt.Errorf("ProxyGroup %s: %s", option.Name, err.Error()) } groupName := option.Name if node, ok := graph[groupName]; ok { if node.data != nil { return fmt.Errorf("ProxyGroup %s: duplicate group name", groupName) } node.data = mapping node.option = option } else { graph[groupName] = &graphNode{0, -1, mapping, 0, option, nil} } for _, proxy := range option.Proxies { if node, ex := graph[proxy]; ex { node.indegree++ } else { graph[proxy] = &graphNode{1, -1, nil, 0, nil, nil} } } } // Step 1.2 Topological Sort // topological index of **ProxyGroup** index := 0 queue := make([]string, 0) for name, node := range graph { // in the beginning, put nodes that have `node.indegree == 0` into queue. if node.indegree == 0 { queue = append(queue, name) } } // every element in queue have indegree == 0 for ; len(queue) > 0; queue = queue[1:] { name := queue[0] node := graph[name] if node.option != nil { index++ groupsConfig[len(groupsConfig)-index] = node.data if len(node.option.Proxies) == 0 { delete(graph, name) continue } for _, proxy := range node.option.Proxies { child := graph[proxy] child.indegree-- if child.indegree == 0 { queue = append(queue, proxy) } } } delete(graph, name) } // no loop is detected, return sorted ProxyGroup if len(graph) == 0 { return nil } // if loop is detected, locate the loop and throw an error // Step 2.1 rebuild the graph, fill `outdegree` and `from` filed for name, node := range graph { if node.option == nil { continue } if len(node.option.Proxies) == 0 { continue } for _, proxy := range node.option.Proxies { node.outdegree++ child := graph[proxy] if child.from == nil { child.from = make([]string, 0, child.indegree) } child.from = append(child.from, name) } } // Step 2.2 remove nodes outside the loop. so that we have only the loops remain in `graph` queue = make([]string, 0) // initialize queue with node have outdegree == 0 for name, node := range graph { if node.outdegree == 0 { queue = append(queue, name) } } // every element in queue have outdegree == 0 for ; len(queue) > 0; queue = queue[1:] { name := queue[0] node := graph[name] for _, f := range node.from { graph[f].outdegree-- if graph[f].outdegree == 0 { queue = append(queue, f) } } delete(graph, name) } // Step 2.3 report the elements in loop loopElements := make([]string, 0, len(graph)) for name := range graph { loopElements = append(loopElements, name) delete(graph, name) } return fmt.Errorf("loop is detected in ProxyGroup, please check following ProxyGroups: %v", loopElements) } func verifyIP6() bool { if iAddrs, err := net.InterfaceAddrs(); err == nil { for _, addr := range iAddrs { if prefix, err := netip.ParsePrefix(addr.String()); err == nil { if addr := prefix.Addr().Unmap(); addr.Is6() && addr.IsGlobalUnicast() { return true } } } } return false }