add emotion_chart in analysis

This commit is contained in:
DzhiWang 2023-12-16 00:28:36 +08:00
parent 1864863885
commit 86f0f1ec78
2 changed files with 92 additions and 0 deletions

View File

@ -159,6 +159,34 @@ class Msg:
lock.release()
return result
def get_txt_messages_by_days(self, username_, is_Annual_report_=False, year_='2023'):
if not self.open_flag:
return None
if is_Annual_report_:
sql = '''
select StrContent,strftime('%Y-%m-%d',CreateTime,'unixepoch','localtime') as days
from MSG
where StrTalker=? and Type=1 and strftime('%Y',CreateTime,'unixepoch','localtime') = ?
order by days
'''
else:
sql = '''
select StrContent,strftime('%Y-%m-%d',CreateTime,'unixepoch','localtime') as days
from MSG
where StrTalker=? and Type=1
order by days
'''
try:
lock.acquire(True)
if is_Annual_report_:
self.cursor.execute(sql, [username_, year_])
else:
self.cursor.execute(sql, [username_])
result = self.cursor.fetchall()
finally:
lock.release()
return result
def get_messages_by_keyword(self, username_, keyword, num=5, max_len=10):
if not self.open_flag:
return None

View File

@ -1,4 +1,7 @@
from collections import Counter
import snownlp
import numpy as np
import pandas as pd
from PyQt5.QtCore import QFile, QTextStream, QIODevice
@ -197,6 +200,65 @@ def hour_count(wxid, is_Annual_report=False, year='2023'):
}
def emotion_chart(wxid, is_Annual_report=False, year='2023'):
txt_messages = msg_db.get_txt_messages_by_days(wxid, is_Annual_report, year)
df = pd.DataFrame(txt_messages, columns=['message', 'date'])
d = df.groupby('date')
dates = []
emotions = []
for date, messages in d:
dates.append(date)
s = 0
for msg in messages:
val = snownlp.SnowNLP(msg).sentiments
s += val
emotions.append(s / len(messages))
emotions = np.array(emotions)
emotions = np.around(emotions, 3) * 100
emotions = np.around(emotions, 1)
max_ = max(emotions)
min_ = min(emotions)
# print(f'max:{max_},min:{min_}')
e = (
Line()
.add_xaxis(
xaxis_data=dates,
)
.add_yaxis(
series_name="情感趋势",
is_smooth=True,
y_axis=emotions,
markpoint_opts=opts.MarkPointOpts(
data=[
opts.MarkPointItem(type_="max", name="最大值", value=int(max_ * 100) / 100),
opts.MarkPointItem(type_="min", name="最小值", value=int(min_ * 100) / 100),
]
),
markline_opts=opts.MarkLineOpts(
data=[opts.MarkLineItem(type_="average", name="平均值")]
),
)
.set_global_opts(
yaxis_opts=opts.AxisOpts(
max_=max_,
min_=min_,
),
xaxis_opts=opts.AxisOpts(
type_='time'
),
axispointer_opts=opts.AxisPointerOpts(
is_show=True, link=[{"xAxisIndex": "all"}]
),
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
)
return {
'chart_data': e
}
class Analysis:
pass
@ -214,3 +276,5 @@ if __name__ == '__main__':
m['chart_data'].render("./data/聊天统计/month_num.html")
h = hour_count('wxid_27hqbq7vx5hf22')
h['chart_data'].render("./data/聊天统计/hour_count.html")
e = emotion_chart('wxid_27hqbq7vx5hf22', False, '2023')
e['chart_data'].render("./data/聊天统计/emotion_chart.html")