mirror of
https://github.com/LC044/WeChatMsg
synced 2024-11-14 05:21:41 +08:00
add emotion_chart in analysis
This commit is contained in:
parent
1864863885
commit
86f0f1ec78
@ -159,6 +159,34 @@ class Msg:
|
||||
lock.release()
|
||||
return result
|
||||
|
||||
def get_txt_messages_by_days(self, username_, is_Annual_report_=False, year_='2023'):
|
||||
if not self.open_flag:
|
||||
return None
|
||||
if is_Annual_report_:
|
||||
sql = '''
|
||||
select StrContent,strftime('%Y-%m-%d',CreateTime,'unixepoch','localtime') as days
|
||||
from MSG
|
||||
where StrTalker=? and Type=1 and strftime('%Y',CreateTime,'unixepoch','localtime') = ?
|
||||
order by days
|
||||
'''
|
||||
else:
|
||||
sql = '''
|
||||
select StrContent,strftime('%Y-%m-%d',CreateTime,'unixepoch','localtime') as days
|
||||
from MSG
|
||||
where StrTalker=? and Type=1
|
||||
order by days
|
||||
'''
|
||||
try:
|
||||
lock.acquire(True)
|
||||
if is_Annual_report_:
|
||||
self.cursor.execute(sql, [username_, year_])
|
||||
else:
|
||||
self.cursor.execute(sql, [username_])
|
||||
result = self.cursor.fetchall()
|
||||
finally:
|
||||
lock.release()
|
||||
return result
|
||||
|
||||
def get_messages_by_keyword(self, username_, keyword, num=5, max_len=10):
|
||||
if not self.open_flag:
|
||||
return None
|
||||
|
@ -1,4 +1,7 @@
|
||||
from collections import Counter
|
||||
import snownlp
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from PyQt5.QtCore import QFile, QTextStream, QIODevice
|
||||
|
||||
@ -197,6 +200,65 @@ def hour_count(wxid, is_Annual_report=False, year='2023'):
|
||||
}
|
||||
|
||||
|
||||
def emotion_chart(wxid, is_Annual_report=False, year='2023'):
|
||||
txt_messages = msg_db.get_txt_messages_by_days(wxid, is_Annual_report, year)
|
||||
|
||||
df = pd.DataFrame(txt_messages, columns=['message', 'date'])
|
||||
d = df.groupby('date')
|
||||
dates = []
|
||||
emotions = []
|
||||
for date, messages in d:
|
||||
dates.append(date)
|
||||
s = 0
|
||||
for msg in messages:
|
||||
val = snownlp.SnowNLP(msg).sentiments
|
||||
s += val
|
||||
emotions.append(s / len(messages))
|
||||
emotions = np.array(emotions)
|
||||
emotions = np.around(emotions, 3) * 100
|
||||
emotions = np.around(emotions, 1)
|
||||
|
||||
max_ = max(emotions)
|
||||
min_ = min(emotions)
|
||||
# print(f'max:{max_},min:{min_}')
|
||||
e = (
|
||||
Line()
|
||||
.add_xaxis(
|
||||
xaxis_data=dates,
|
||||
)
|
||||
.add_yaxis(
|
||||
series_name="情感趋势",
|
||||
is_smooth=True,
|
||||
y_axis=emotions,
|
||||
markpoint_opts=opts.MarkPointOpts(
|
||||
data=[
|
||||
opts.MarkPointItem(type_="max", name="最大值", value=int(max_ * 100) / 100),
|
||||
opts.MarkPointItem(type_="min", name="最小值", value=int(min_ * 100) / 100),
|
||||
]
|
||||
),
|
||||
markline_opts=opts.MarkLineOpts(
|
||||
data=[opts.MarkLineItem(type_="average", name="平均值")]
|
||||
),
|
||||
)
|
||||
.set_global_opts(
|
||||
yaxis_opts=opts.AxisOpts(
|
||||
max_=max_,
|
||||
min_=min_,
|
||||
),
|
||||
xaxis_opts=opts.AxisOpts(
|
||||
type_='time'
|
||||
),
|
||||
axispointer_opts=opts.AxisPointerOpts(
|
||||
is_show=True, link=[{"xAxisIndex": "all"}]
|
||||
),
|
||||
)
|
||||
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
|
||||
)
|
||||
return {
|
||||
'chart_data': e
|
||||
}
|
||||
|
||||
|
||||
class Analysis:
|
||||
pass
|
||||
|
||||
@ -214,3 +276,5 @@ if __name__ == '__main__':
|
||||
m['chart_data'].render("./data/聊天统计/month_num.html")
|
||||
h = hour_count('wxid_27hqbq7vx5hf22')
|
||||
h['chart_data'].render("./data/聊天统计/hour_count.html")
|
||||
e = emotion_chart('wxid_27hqbq7vx5hf22', False, '2023')
|
||||
e['chart_data'].render("./data/聊天统计/emotion_chart.html")
|
||||
|
Loading…
Reference in New Issue
Block a user