WeChatMsg/app/util/exporter/exporter_json.py
2024-03-29 14:35:35 +08:00

194 lines
6.4 KiB
Python

import json
import random
import os
from app.DataBase import msg_db
from app.person import Me
from .exporter import ExporterBase
def merge_content(conversions_list) -> list:
"""
合并一组对话中连续发送的句子
@param conversions_list:
@return:
"""
merged_data = []
current_role = None
current_content = ""
str_time = ''
for item in conversions_list:
if 'str_time' in item:
str_time = item['str_time']
else:
str_time = ''
if current_role is None:
current_role = item["role"]
current_content = item["content"]
elif current_role == item["role"]:
current_content += "\n" + item["content"]
else:
# merged_data.append({"role": current_role, "content": current_content, 'str_time': str_time})
merged_data.append({"role": current_role, "content": current_content})
current_role = item["role"]
current_content = item["content"]
str_time = item.get('str_time')
# 处理最后一组
if current_role is not None:
# merged_data.append({"role": current_role, "content": current_content,'str_time': str_time})
merged_data.append({"role": current_role, "content": current_content})
return merged_data
def system_prompt():
system = {
"role": "system",
# "content": f"你是{Me().name},一个聪明、热情、善良的男大学生,后面的对话来自{self.contact.remark}(!!!注意:对方的身份十分重要,你务必记住对方的身份,因为跟不同的人对话要用不同的态度、语气),你要认真地回答他"
"content": f"你是{Me().name},一个聪明、热情、善良的人,后面的对话来自你的朋友,你要认真地回答他"
}
return system
def message_to_conversion(group):
conversions = [system_prompt()]
while len(group) and group[-1][4] == 0:
group.pop()
for message in group:
is_send = message[4]
if len(conversions) == 1 and is_send:
continue
if is_send:
json_msg = {
"role": "assistant",
"content": message[7]
}
else:
json_msg = {
"role": "user",
"content": message[7]
}
json_msg['str_time'] = message[8]
conversions.append(json_msg)
if len(conversions) == 1:
return []
return merge_content(conversions)
class JsonExporter(ExporterBase):
def split_by_time(self, length=300):
messages = msg_db.get_messages_by_type(self.contact.wxid, type_=1, time_range=self.time_range)
start_time = 0
res = []
i = 0
while i < len(messages):
message = messages[i]
timestamp = message[5]
is_send = message[4]
group = [
system_prompt()
]
while i < len(messages) and timestamp - start_time < length:
if is_send:
json_msg = {
"role": "assistant",
"content": message[7]
}
else:
json_msg = {
"role": "user",
"content": message[7]
}
group.append(json_msg)
i += 1
if i >= len(messages):
break
message = messages[i]
timestamp = message[5]
is_send = message[4]
while is_send:
json_msg = {
"role": "assistant",
"content": message[7]
}
group.append(json_msg)
i += 1
if i >= len(messages):
break
message = messages[i]
timestamp = message[5]
is_send = message[4]
start_time = timestamp
res.append(
{
"conversations": group
}
)
res_ = []
for item in res:
conversations = item['conversations']
res_.append({
'conversations': merge_content(conversations)
})
return res_
def split_by_intervals(self, max_diff_seconds=300):
messages = msg_db.get_messages_by_type(self.contact.wxid, type_=1, time_range=self.time_range)
res = []
i = 0
current_group = []
while i < len(messages):
message = messages[i]
timestamp = message[5]
is_send = message[4]
while is_send and i + 1 < len(messages):
i += 1
message = messages[i]
is_send = message[4]
current_group = [messages[i]]
i += 1
while i < len(messages) and messages[i][5] - current_group[-1][5] <= max_diff_seconds:
current_group.append(messages[i])
i += 1
while i < len(messages) and messages[i][4]:
current_group.append(messages[i])
i += 1
res.append(current_group)
res_ = []
for group in res:
conversations = message_to_conversion(group)
if conversations:
res_.append({
'conversations': conversations
})
return res_
def to_json(self):
print(f"【开始导出 json {self.contact.remark}")
origin_path = self.origin_path
os.makedirs(origin_path, exist_ok=True)
filename = os.path.join(origin_path, f"{self.contact.remark}")
# res = self.split_by_time()
res = self.split_by_intervals(60)
# 打乱列表顺序
random.shuffle(res)
# 计算切分比例
split_ratio = 0.2 # 20% for the second list
# 计算切分点
split_point = int(len(res) * split_ratio)
# 分割列表
train_data = res[split_point:]
dev_data = res[:split_point]
with open(f'{filename}_train.json', "w", encoding="utf-8") as f:
json.dump(train_data, f, ensure_ascii=False, indent=4)
with open(f'{filename}_dev.json', "w", encoding="utf-8") as f:
json.dump(dev_data, f, ensure_ascii=False, indent=4)
self.okSignal.emit(1)
def run(self):
self.to_json()