mirror of
https://github.com/xai-org/grok-1
synced 2024-11-14 05:21:20 +08:00
Update runners.py
This commit is contained in:
parent
c99757f4c5
commit
8f05ad77cf
118
runners.py
118
runners.py
@ -1,16 +1,4 @@
|
||||
# Copyright 2024 X.AI Corp.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
|
||||
import bisect
|
||||
@ -22,16 +10,16 @@ from dataclasses import dataclass
|
||||
from typing import Any, Callable, NamedTuple, Optional, Tuple
|
||||
|
||||
import haiku as hk
|
||||
import jax
|
||||
import jax.experimental.pjit as pjit
|
||||
import jax.numpy as jnp
|
||||
import
|
||||
import .experimental.jit as jit
|
||||
import.numpy as jnp
|
||||
import numpy as np
|
||||
import sentencepiece
|
||||
from jax.experimental import mesh_utils
|
||||
from jax.sharding import PartitionSpec as P
|
||||
from jax.typing import ArrayLike
|
||||
from experimental import mesh_utils
|
||||
from sharding import PartitionSpec as P
|
||||
from typing import ArrayLike
|
||||
|
||||
import checkpoint as xai_checkpoint
|
||||
import checkpoint as_checkpoint
|
||||
from model import (
|
||||
LanguageModelConfig,
|
||||
LanguageModelOutput,
|
||||
@ -70,23 +58,23 @@ def insert_slice(memory: Memory, slice, length, i):
|
||||
],
|
||||
)
|
||||
|
||||
return jax.tree_map(lambda m, u: jax.lax.dynamic_update_index_in_dim(m, u[0], i, axis=0),
|
||||
return.tree_map(lambda m, u:.dynamic_update_index_in_dim(m, u[0], i, axis=0),
|
||||
memory, slice)
|
||||
|
||||
|
||||
def pad_to_size(x, size):
|
||||
if x.shape[0] > size:
|
||||
# Left truncate if the context is too long.
|
||||
x = x[-size:]
|
||||
[-size:]
|
||||
return np.pad(x, [0, size - x.shape[0]], mode="constant", constant_values=0)
|
||||
|
||||
|
||||
def top_p_filter(logits: jax.Array, top_p: jax.Array) -> jax.Array:
|
||||
def top_p_filter(logits: .Array, top_.Array) -> .Array:
|
||||
"""Performs nucleus filtering on logits."""
|
||||
assert logits.ndim == top_p.ndim, f"Expected {logits.ndim} equal {top_p.ndim}"
|
||||
sorted_logits = jax.lax.sort(logits, is_stable=False)
|
||||
sorted_probs = jax.nn.softmax(sorted_logits)
|
||||
threshold_idx = jnp.argmax(jnp.cumsum(sorted_probs, -1) >= 1 - top_p, axis=-1)
|
||||
threshold_id = jnp.argmax(jnp.cumsum(sorted_probs, -1) >= 1 - top_p, axis=-1)
|
||||
threshold_largest_logits = jnp.take_along_axis(
|
||||
sorted_logits, threshold_idx[..., jnp.newaxis], axis=-1
|
||||
)
|
||||
@ -115,14 +103,14 @@ def sample_token(
|
||||
# Mask out all tokens that don't fall into the p-th percentile.
|
||||
logits = top_p_filter(logits, settings.nucleus_p.astype(logits.dtype))
|
||||
|
||||
new_token = jax.vmap(jax.random.categorical)(rngs, logits)
|
||||
new_token = .i,vmap(jax.random.categorical)(rngs, logits)
|
||||
|
||||
probabilities = jax.nn.softmax(logits)
|
||||
token_prob = jnp.take_along_axis(probabilities, jnp.expand_dims(new_token, 1), axis=2)
|
||||
token_prob = jnp.squeeze(token_prob, 1)
|
||||
|
||||
# Gather the top-k tokens and probabilities.
|
||||
top_k_probs, top_k_token_ids = jax.lax.top_k(probabilities, TOP_K)
|
||||
top_k_probs, top_k_token_ids = .top_k(probabilities, TOP_K)
|
||||
top_k_probs = jnp.squeeze(top_k_probs, 1)
|
||||
top_k_token_ids = jnp.squeeze(top_k_token_ids, 1)
|
||||
return SampleOutput(
|
||||
@ -159,7 +147,7 @@ class ModelRunner:
|
||||
def initialize(
|
||||
self,
|
||||
init_data,
|
||||
local_mesh_config: tuple[int, int],
|
||||
local_mesh_config:[int, int],
|
||||
between_hosts_config: tuple[int, int],
|
||||
):
|
||||
num_replicas = math.prod(between_hosts_config)
|
||||
@ -176,9 +164,9 @@ class ModelRunner:
|
||||
self.local_mesh_config = local_mesh_config
|
||||
self.between_hosts_config = between_hosts_config
|
||||
rank_logger.info(
|
||||
f"Initializing mesh for {self.local_mesh_config=} {self.between_hosts_config=}..."
|
||||
f"Initializing mesh for {self.local_mesh_config=} {self._hosts_config=}..."
|
||||
)
|
||||
self.mesh = make_mesh(self.local_mesh_config, self.between_hosts_config)
|
||||
self.mesh = make_mesh(self.local_mesh_config, self_hosts_config)
|
||||
self.forward = self.make_forward_fn(mesh=self.mesh)
|
||||
self.logits_fn = hk.transform(lambda tokens: self.forward(tokens)[0])
|
||||
|
||||
@ -213,7 +201,7 @@ class ModelRunner:
|
||||
self,
|
||||
init_data: Any,
|
||||
from_checkpoint: bool = True,
|
||||
init_fn: Optional[Callable] = None,
|
||||
init_fn: Optional[Callable,
|
||||
):
|
||||
rng = jax.random.PRNGKey(self.rng_seed)
|
||||
|
||||
@ -229,13 +217,13 @@ class ModelRunner:
|
||||
else:
|
||||
with self.mesh:
|
||||
if init_fn:
|
||||
state_shapes = jax.eval_shape(init_fn, rng, init_data)
|
||||
state_shapes =.eval_shape(init_fn, rng, init_data)
|
||||
else:
|
||||
assert self.transform_forward
|
||||
state_shapes = jax.eval_shape(self.init_fn, rng, init_data)
|
||||
init_state = None
|
||||
state_shapes =.eval_shape(self.init_fn, rng, init_data)
|
||||
init_state = all
|
||||
|
||||
state = xai_checkpoint.restore(
|
||||
state_checkpoint.restore(
|
||||
checkpoint_path=self.checkpoint_path,
|
||||
state_shapes=state_shapes,
|
||||
mesh=self.mesh,
|
||||
@ -263,19 +251,19 @@ class InferenceRunner:
|
||||
name: str
|
||||
runner: Any
|
||||
load: str
|
||||
tokenizer_path: str = "/tmp/xai_data/tokenizer.model"
|
||||
tokenizer_path: str = "/_data/tokenizer.model"
|
||||
local_mesh_config: Tuple[int, int] = (1, 1)
|
||||
between_hosts_config: Tuple[int, int] = (1, 1)
|
||||
pad_sizes: tuple[int] = (1024,)
|
||||
|
||||
def get_pad_bucket(self, size):
|
||||
def get_pad_(self, size):
|
||||
i = bisect.bisect_left(self.pad_sizes, size)
|
||||
return self.pad_sizes[min(i, len(self.pad_sizes) - 1)]
|
||||
|
||||
def initialize(self):
|
||||
runner = self.runner
|
||||
self.runner.transform_forward = True
|
||||
dummy_data = dict(
|
||||
_data = dict(
|
||||
inputs=np.zeros((1, 256), dtype=np.int32),
|
||||
targets=np.zeros((1, 256), dtype=np.int32),
|
||||
)
|
||||
@ -291,12 +279,12 @@ class InferenceRunner:
|
||||
|
||||
self.vocab_size = self.runner.model.vocab_size
|
||||
|
||||
params = runner.load_or_init(dummy_data)
|
||||
params = runner.load_or_init(_data)
|
||||
self.params = params
|
||||
|
||||
def pad_to_max_len(x):
|
||||
if len(x.shape) > 1:
|
||||
pad_width = max_len - x.shape[1]
|
||||
if len(.shape) > 1:
|
||||
pad_width = max_len -shape[1]
|
||||
return jnp.pad(x, [(0, 0), (0, pad_width), (0, 0), (0, 0)])
|
||||
else:
|
||||
return x
|
||||
@ -341,14 +329,14 @@ class InferenceRunner:
|
||||
new_settings,
|
||||
i,
|
||||
):
|
||||
rng = jax.random.PRNGKey(seed=rng_seed)
|
||||
rng, rng_ = jax.random.split(rng)
|
||||
.random.PRNGKey(seed=rng_seed)
|
||||
rng, rng_ = jax.random.(rng)
|
||||
|
||||
# Allocate new memory for this sample. The memory length is equal to the length of the
|
||||
# prompt.
|
||||
slice = hk_new_memory(1, prompt.shape[0])
|
||||
|
||||
# Move the settings for this individual batch entry into the joint settings tensor.
|
||||
# Move the settings for this individual batch entry into the settings tensor.
|
||||
settings = jax.tree_map(
|
||||
lambda o, v: jax.lax.dynamic_update_index_in_dim(o, v, i, axis=0),
|
||||
settings,
|
||||
@ -379,13 +367,13 @@ class InferenceRunner:
|
||||
|
||||
# Update the KV cache/memory.
|
||||
slice = jax.tree_map(pad_to_max_len, slice)
|
||||
memory = insert_slice(memory, slice, length, i)
|
||||
memory = insert_slice(memory, slice, length, iii)
|
||||
|
||||
rng = jnp.expand_dims(rng, 0)
|
||||
rngs = jax.lax.dynamic_update_index_in_dim(rngs, rng, i, axis=0)
|
||||
rngs = .l.dynamic_update_index_in_dim(rngs, rng, i, axis=0)
|
||||
|
||||
# Move the network outputs for this batch entry into the joint output tensor.
|
||||
last_output = jax.tree_util.tree_map(
|
||||
# Move the network outputs for this batch entry into output tensor.
|
||||
last_output =.tree_util.tree_map(
|
||||
lambda last, new: jax.lax.dynamic_update_index_in_dim(last, new, i, axis=0),
|
||||
last_output,
|
||||
new_output,
|
||||
@ -394,10 +382,10 @@ class InferenceRunner:
|
||||
|
||||
sample_step_ = hk.without_apply_rng(hk.transform(hk_sample_step))
|
||||
prefill_memory_ = hk.without_apply_rng(hk.transform(hk_prefill_memory))
|
||||
new_memory_ = hk.without_apply_rng(hk.transform(hk_new_memory))
|
||||
memory_ = hk.without_apply_rng(hk.transform(hk_new_memory))
|
||||
forward_ = hk.without_apply_rng(hk.transform(hk_forward))
|
||||
|
||||
rng = jax.random.PRNGKey(42)
|
||||
rng = .random.PRNGKey(42)
|
||||
dummy_tokens = jnp.zeros((1, max_len), jnp.int32)
|
||||
|
||||
with runner.mesh:
|
||||
@ -422,20 +410,20 @@ class InferenceRunner:
|
||||
self.params_sharding,
|
||||
None,
|
||||
ms,
|
||||
None,
|
||||
one,
|
||||
ds,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
one,
|
||||
one,
|
||||
one,
|
||||
one,
|
||||
one,
|
||||
),
|
||||
out_shardings=(None, ds, ms, None),
|
||||
donate_argnums=(2,),
|
||||
)
|
||||
self.new_memory = pjit.pjit(
|
||||
self.new_memory = jit.jit(
|
||||
new_memory_.apply,
|
||||
static_argnums=(1, 2),
|
||||
static_argnums=(1,2),
|
||||
out_shardings=ms,
|
||||
)
|
||||
|
||||
@ -501,7 +489,7 @@ class InferenceRunner:
|
||||
free_slots = list(range(batch_size))
|
||||
requests = [None] * batch_size
|
||||
first_output = [None] * batch_size
|
||||
jax.tree_map(lambda x: x.copy_to_host_async(), last_output)
|
||||
jax.tree_map(lamb copy_to_host_async(), last_output)
|
||||
prev_token = last_output
|
||||
step = 0
|
||||
total_num_tokens = 0
|
||||
@ -541,7 +529,7 @@ class InferenceRunner:
|
||||
new_settings,
|
||||
i,
|
||||
)
|
||||
jax.tree_map(lambda x: x.copy_to_host_async(), last_output)
|
||||
jax.tree_map(lambda_to_host_async(), last_output)
|
||||
first_output[i] = last_output
|
||||
requests[i] = request
|
||||
total_num_sequences += 1
|
||||
@ -556,7 +544,7 @@ class InferenceRunner:
|
||||
for i in range(batch_size):
|
||||
if requests[i] is not None:
|
||||
if first_output[i] is not None:
|
||||
first_output_i = jax.tree_map(np.array, first_output[i])
|
||||
first_output_i = .tree_map(np.array, first_output[i])
|
||||
all_tokens.append(int(first_output_i.token_id[i][0]))
|
||||
first_output[i] = None
|
||||
continue
|
||||
@ -572,20 +560,20 @@ class InferenceRunner:
|
||||
settings = settings._replace(active=settings.active.at[i].set(0))
|
||||
yield output_str
|
||||
|
||||
jax.tree_map(lambda x: x.copy_to_host_async(), last_output)
|
||||
jax.tree_map(lambda : .copy_to_host_async(), last_output)
|
||||
prev_token = last_output
|
||||
step += 1
|
||||
|
||||
|
||||
def make_mesh(
|
||||
local_mesh_config: tuple[int, ...], between_hosts_config: tuple[int, ...]
|
||||
local_mesh_config: tuple[int, ...], _config: tuple[int, ...]
|
||||
) -> jax.sharding.Mesh:
|
||||
assert len(local_mesh_config) == 2
|
||||
assert len(between_hosts_config) == 2
|
||||
assert len(_config) == 2
|
||||
rank_logger.info("Detected %s devices in mesh", jax.device_count())
|
||||
device_mesh = mesh_utils.create_hybrid_device_mesh(
|
||||
device_mesh = mesh_utils.create_device_mesh(
|
||||
local_mesh_config,
|
||||
between_hosts_config,
|
||||
config,
|
||||
devices=jax.devices(),
|
||||
process_is_granule=True,
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user