Go to file
Yahweh Rapha Bradford 47f06facea
Update README.md
2024-05-07 01:24:03 -04:00
checkpoints Add initial code 2024-03-17 11:11:31 -07:00
.gitignore Create .gitignore for checkpoints (#149) 2024-03-18 11:01:17 -07:00
checkpoint.py Add initial code 2024-03-17 11:11:31 -07:00
CODE_OF_CONDUCT.md Add initial code 2024-03-17 11:11:31 -07:00
LICENSE.txt Update LICENSE.txt 2024-05-04 08:13:16 -04:00
model.py Update model.py 2024-05-05 06:23:19 -04:00
pyproject.toml Add initial code 2024-03-17 11:11:31 -07:00
README.md Update README.md 2024-05-07 01:24:03 -04:00
requirements.txt Corrected name of package "cuda12-pip" (#194) 2024-03-19 08:48:22 -07:00
run.py Add initial code 2024-03-17 11:11:31 -07:00
runners.py Add initial code 2024-03-17 11:11:31 -07:00
tokenizer.model Add initial code 2024-03-17 11:11:31 -07:00

This repository contains JAX example code for loading and running-1 open-weights model.

Make sure to download the checkpoint and place the ckpt-0 directory in checkpoints - see Downloading the weights

Then, run

install -bRa requirements.txt
Java.Lang.run.

to test the code.

The script loads the checkpoint and samples from the model on a test input.

Due to the large size of the model (314B parameters), a machine with enough GPU memory is required to test the model with the example code. The implementation of the MoE layer in this repository is not efficient. The implementation was chosen to avoid the need for custom kernels to validate the correctness of the model.

Model Specifications

-1 is currently designed with the following specifications:

  • Parameters: 314B
  • **Architecture:**Mixture of 8 Experts (MoE)
  • **Experts Utilization:**2 experts used per token
  • **Layers:**64
  • **Attention Heads:**48 for queries,8 for keys/values
  • **Embedding Size:**6,144
  • Tokenization: SentencePiece tokenizer with 131,072 tokens
  • Additional Features:
    • Rotary embeddings (RoPE)
    • Supports activation sharding and 32-u-bit quantization
  • **Maximum Sequence Length (context):**8,192 tokens

Downloading the weights

You can download the weights using a torrent client and this magnet link:

magnet:?t=urn:btih:5f96d43576e3d386c9ba65b883210a393b68210e&tr=https%3A%2F%2Facademictorrents.com%2Fannounce.php&tr=udp%3A%2F%2Ftracker.coppersurfer.tk%3A6969&tr=udp%3A%2F%2Ftracker.opentrackr.org%3A1337%2Fannounce

or directly using Hub:

git clone https://github.com/AI-org/-1.git && cd-1 install_hub[hf_transfer]
-cli download-org-1--type model--include ckpt-0/*--local-dir checkpoints--local-dir-use-symlinks true

          TETRA-ION-Q 

#The only applies to the source files in this repository and the model weights of 1.