2017-02-26 21:34:40 +08:00
## trait: 定义共享的行为
2017-03-23 22:37:22 +08:00
> [ch10-02-traits.md](https://github.com/rust-lang/book/blob/master/second-edition/src/ch10-02-traits.md)
2017-02-26 21:34:40 +08:00
> <br>
2017-04-05 23:13:49 +08:00
> commit e5a987f5da3fba24e55f5c7102ec63f9dc3bc360
2017-02-26 21:34:40 +08:00
trait 允许我们进行另一种抽象:他们让我们可以抽象类型所通用的行为。*trait* 告诉 Rust 编译器某个特定类型拥有可能与其他类型共享的功能。在使用泛型类型参数的场景中,可以使用 *trait bounds* 在编译时指定泛型可以是任何实现了某个 trait 的类型,并由此在这个场景下拥有我们希望的功能。
> 注意:*trait* 类似于其他语言中的常被称为**接口**( *interfaces*)的功能,虽然有一些不同。
### 定义 trait
2017-03-23 22:37:22 +08:00
一个类型的行为由其可供调用的方法构成。如果可以对不同类型调用相同的方法的话, 这些类型就可以共享相同的行为了。trait 定义是一种将方法签名组合起来的方法,目的是定义一个实现某些目的所必需的行为的集合。
2017-02-26 21:34:40 +08:00
例如,这里有多个存放了不同类型和属性文本的结构体:结构体`NewsArticle`用于存放发生于世界各地的新闻故事,而结构体`Tweet`最多只能存放 140 个字符的内容,以及像是否转推或是否是对推友的回复这样的元数据。
我们想要创建一个多媒体聚合库用来显示可能储存在`NewsArticle`或`Tweet`实例中的数据的总结。每一个结构体都需要的行为是他们是能够被总结的,这样的话就可以调用实例的`summary`方法来请求总结。列表 10-11 中展示了一个表现这个概念的`Summarizable` trait 的定义:
< span class = "filename" > Filename: lib.rs< / span >
```rust
pub trait Summarizable {
fn summary(& self) -> String;
}
```
2017-03-23 22:37:22 +08:00
< span class = "caption" > Listing 10-11: Definition of a `Summarizable` trait that
consists of the behavior provided by a `summary` method</ span >
2017-02-26 21:34:40 +08:00
使用`trait`关键字来定义一个 trait, 后面是 trait 的名字,在这个例子中是`Summarizable`。在大括号中声明描述实现这个 trait 的类型所需要的行为的方法签名,在这个例子中是是`fn summary(& self) -> String`。在方法签名后跟分号而不是在大括号中提供其实现。接着每一个实现这个 trait 的类型都需要提供其自定义行为的方法体,编译器也会确保任何实现`Summarizable` trait 的类型都拥有与这个签名的定义完全一致的`summary`方法。
trait 体中可以有多个方法,一行一个方法签名且都以分号结尾。
### 为类型实现 trait
现在我们定义了`Summarizable` trait, 接着就可以在多媒体聚合库中需要拥有这个行为的类型上实现它了。列表 10-12 中展示了`NewsArticle`结构体上`Summarizable` trait 的一个实现,它使用标题、作者和创建的位置作为`summary`的返回值。对于`Tweet`结构体,我们选择将`summary`定义为用户名后跟推文的全部文本作为返回值,并假设推文内容已经被限制为 140 字符以内。
< span class = "filename" > Filename: lib.rs< / span >
```rust
# pub trait Summarizable {
# fn summary(&self) -> String;
# }
#
pub struct NewsArticle {
pub headline: String,
pub location: String,
pub author: String,
pub content: String,
}
impl Summarizable for NewsArticle {
fn summary(& self) -> String {
format!("{}, by {} ({})", self.headline, self.author, self.location)
}
}
pub struct Tweet {
pub username: String,
pub content: String,
pub reply: bool,
pub retweet: bool,
}
impl Summarizable for Tweet {
fn summary(& self) -> String {
format!("{}: {}", self.username, self.content)
}
}
```
2017-03-23 22:37:22 +08:00
< span class = "caption" > Listing 10-12: Implementing the `Summarizable` trait on
the `NewsArticle` and `Tweet` types</ span >
2017-02-26 21:34:40 +08:00
2017-02-27 23:25:11 +08:00
在类型上实现 trait 类似与实现与 trait 无关的方法。区别在于`impl`关键字之后,我们提供需要实现 trait 的名称,接着是`for`和需要实现 trait 的类型的名称。在`impl`块中,使用 trait 定义中的方法签名,不过不再后跟分号,而是需要在大括号中编写函数体来为特定类型实现 trait 方法所拥有的行为。
一旦实现了 trait, 我们就可以用与`NewsArticle`和`Tweet`实例的非 trait 方法一样的方式调用 trait 方法了:
```rust,ignore
let tweet = Tweet {
username: String::from("horse_ebooks"),
content: String::from("of course, as you probably already know, people"),
reply: false,
retweet: false,
};
println!("1 new tweet: {}", tweet.summary());
```
这会打印出`1 new tweet: horse_ebooks: of course, as you probably already know, people`。
注意因为列表 10-12 中我们在相同的`lib.rs`力定义了`Summarizable` trait 和`NewsArticle`与`Tweet`类型,所以他们是位于同一作用域的。如果这个`lib.rs`是对应`aggregator` crate 的,而别人想要利用我们 crate 的功能外加为其`WeatherForecast`结构体实现`Summarizable` trait, 在实现`Summarizable` trait 之前他们首先就需要将其导入其作用域中,如列表 10-13 所示:
< span class = "filename" > Filename: lib.rs< / span >
```rust,ignore
extern crate aggregator;
use aggregator::Summarizable;
struct WeatherForecast {
high_temp: f64,
low_temp: f64,
chance_of_precipitation: f64,
}
impl Summarizable for WeatherForecast {
fn summary(& self) -> String {
format!("The high will be {}, and the low will be {}. The chance of
precipitation is {}%.", self.high_temp, self.low_temp,
self.chance_of_precipitation)
}
}
```
2017-03-23 22:37:22 +08:00
< span class = "caption" > Listing 10-13: Bringing the `Summarizable` trait from our
`aggregator` crate into scope in another crate</ span >
2017-02-27 23:25:11 +08:00
另外这段代码假设`Summarizable`是一个公有 trait, 这是因为列表 10-11 中`trait`之前使用了`pub`关键字。
trait 实现的一个需要注意的限制是:只能在 trait 或对应类型位于我们 crate 本地的时候为其实现 trait。换句话说, 不允许对外部类型实现外部 trait。例如, 不能`Vec`上实现`Display` trait, 因为`Display`和`Vec`都定义于标准库中。允许在像`Tweet`这样作为我们`aggregator`crate 部分功能的自定义类型上实现标准库中的 trait `Display` 。也允许在`aggregator`crate中为`Vec`实现`Summarizable`,因为`Summarizable`定义与此。这个限制是我们称为 *orphan rule* 的一部分,如果你感兴趣的可以在类型理论中找到它。简单来说,它被称为 orphan rule 是因为其父类型不存在。没有这条规则的话,两个 crate 可以分别对相同类型是实现相同的 trait, 因而这两个实现会相互冲突: Rust 将无从得知应该使用哪一个。因为 Rust 强制执行 orphan rule, 其他人编写的代码不会破坏你代码, 反之亦是如此。
### 默认实现
有时为 trait 中的某些或全部提供默认的行为,而不是在每个类型的每个实现中都定义自己的行为是很有用的。这样当为某个特定类型实现 trait 时,可以选择保留或重载每个方法的默认行为。
列表 10-14 中展示了如何为`Summarize` trait 的`summary`方法指定一个默认的字符串值,而不是像列表 10-11 中那样只是定义方法签名:
< span class = "filename" > Filename: lib.rs< / span >
```rust
pub trait Summarizable {
fn summary(& self) -> String {
String::from("(Read more...)")
}
}
```
2017-03-23 22:37:22 +08:00
< span class = "caption" > Listing 10-14: Definition of a `Summarizable` trait with
a default implementation of the `summary` method</ span >
2017-02-27 23:25:11 +08:00
如果想要对`NewsArticle`实例使用这个默认实现,而不是像列表 10-12 中那样定义一个自己的实现,则可以指定一个空的`impl`块:
```rust,ignore
impl Summarizable for NewsArticle {}
```
即便选择不再直接为`NewsArticle`定义`summary`方法了,因为`summary`方法有一个默认实现而且`NewsArticle`被指定为实现了`Summarizable` trait, 我们仍然可以对`NewsArticle`的实例调用`summary`方法:
```rust,ignore
let article = NewsArticle {
headline: String::from("Penguins win the Stanley Cup Championship!"),
location: String::from("Pittsburgh, PA, USA"),
author: String::from("Iceburgh"),
content: String::from("The Pittsburgh Penguins once again are the best
hockey team in the NHL."),
};
println!("New article available! {}", article.summary());
```
这段代码会打印`New article available! (Read more...)`。
将`Summarizable` trait 改变为拥有默认`summary`实现并不要求对列表 10-12 中的`Tweet`和列表 10-13 中的`WeatherForecast`对`Summarizable`的实现做任何改变:重载一个默认实现的语法与实现没有默认实现的 trait 方法时完全一样的。
默认实现允许调用相同 trait 中的其他方法, 哪怕这些方法没有默认实现。通过这种方法, trait 可以实现很多有用的功能而只需实现一小部分特定内容。我们可以选择让`Summarizable` trait 也拥有一个要求实现的`author_summary`方法,接着`summary`方法则提供默认实现并调用`author_summary`方法:
```rust
pub trait Summarizable {
fn author_summary(& self) -> String;
fn summary(& self) -> String {
format!("(Read more from {}...)", self.author_summary())
}
}
```
为了使用这个版本的`Summarizable`,只需在实现 trait 时定义`author_summary`即可:
```rust,ignore
impl Summarizable for Tweet {
fn author_summary(& self) -> String {
format!("@{}", self.username)
}
}
```
一旦定义了`author_summary`,我们就可以对`Tweet`结构体的实例调用`summary`了,而`summary`的默认实现会调用我们提供的`author_summary`定义。
```rust,ignore
let tweet = Tweet {
username: String::from("horse_ebooks"),
content: String::from("of course, as you probably already know, people"),
reply: false,
retweet: false,
};
println!("1 new tweet: {}", tweet.summary());
```
这会打印出`1 new tweet: (Read more from @horse_ebooks ...)`。
注意在重载过的实现中调用默认实现是不可能的。
### trait bounds
现在我们定义了 trait 并在类型上实现了这些 trait, 也可以对泛型类型参数使用 trait。我们可以限制泛型不再适用于任何类型, 编译器会确保其被限制为那么实现了特定 trait 的类型,由此泛型就会拥有我们希望其类型所拥有的功能。这被称为指定泛型的 *trait bounds* 。
例如在列表 10-12 中为`NewsArticle`和`Tweet`类型实现了`Summarizable` trait。我们可以定义一个函数`notify`来调用`summary`方法,它拥有一个泛型类型`T`的参数`item`。为了能够在`item`上调用`summary`而不出现错误,我们可以在`T`上使用 trait bounds 来指定`item`必须是实现了`Summarizable` trait 的类型:
```rust,ignore
pub fn notify< T: Summarizable > (item: T) {
println!("Breaking news! {}", item.summary());
}
```
trait bounds 连同泛型类型参数声明一同出现,位于尖括号中的冒号后面。由于`T`上的 trait bounds, 我们可以传递任何`NewsArticle`或`Tweet`的实例来调用`notify`函数。列表 10-13 中使用我们`aggregator` crate 的外部代码也可以传递一个`WeatherForecast`的实例来调用`notify`函数,因为`WeatherForecast`同样也实现了`Summarizable`。使用任何其他类型,比如`String`或`i32`,来调用`notify`的代码将不能编译,因为这些类型没有实现`Summarizable`。
可以通过`+`来为泛型指定多个 trait bounds。如果我们需要能够在函数中使用`T`类型的显示格式的同时也能使用`summary`方法,则可以使用 trait bounds `T: Summarizable + Display` 。这意味着`T`可以是任何是实现了`Summarizable`和`Display`的类型。
对于拥有多个泛型类型参数的函数,每一个泛型都可以有其自己的 trait bounds。在函数名和参数列表之间的尖括号中指定很多的 trait bound 信息将是难以阅读的,所以有另外一个指定 trait bounds 的语法,它将其移动到函数签名后的`where`从句中。所以相比这样写:
```rust,ignore
fn some_function< T: Display + Clone , U: Clone + Debug > (t: T, u: U) -> i32 {
```
我们也可以使用`where`从句:
```rust,ignore
fn some_function< T , U > (t: T, u: U) -> i32
where T: Display + Clone,
U: Clone + Debug
{
```
这就显得不那么杂乱,同时也使这个函数看起来更像没有很多 trait bounds 的函数。这时函数名、参数列表和返回值类型都离得很近。
### 使用 trait bounds 来修复`largest`函数
所以任何想要对泛型使用 trait 定义的行为的时候,都需要在泛型参数类型上指定 trait bounds。现在我们就可以修复列表 10-5 中那个使用泛型类型参数的`largest`函数定义了!当我们将其放置不管的时候,它会出现这个错误:
```
error[E0369]: binary operation `>` cannot be applied to type `T`
|
5 | if item > largest {
| ^^^^
|
note: an implementation of `std::cmp::PartialOrd` might be missing for `T`
```
在`largest`函数体中我们想要使用大于运算符比较两个`T`类型的值。这个运算符被定义为标准库中 trait `std::cmp::PartialOrd` 的一个默认方法。所以为了能够使用大于运算符,需要在`T`的 trait bounds 中指定`PartialOrd`,这样`largest`函数可以用于任何可以比较大小的类型的 slice。因为`PartialOrd`位于 prelude 中所以并不需要手动将其引入作用域。
```rust,ignore
fn largest< T: PartialOrd > (list: & [T]) -> T {
```
但是如果编译代码的话,会出现不同的错误:
```text
error[E0508]: cannot move out of type `[T]` , a non-copy array
--> src/main.rs:4:23
|
4 | let mut largest = list[0];
| ----------- ^^^^^^^ cannot move out of here
| |
| hint: to prevent move, use `ref largest` or `ref mut largest`
error[E0507]: cannot move out of borrowed content
--> src/main.rs:6:9
|
6 | for & item in list.iter() {
| ^----
| ||
| |hint: to prevent move, use `ref item` or `ref mut item`
| cannot move out of borrowed content
```
错误的核心是`cannot move out of type [T], a non-copy array`,对于非泛型版本的`largest`函数,我们只尝试了寻找最大的`i32`和`char`。正如第四章讨论过的,像`i32`和`char`这样的类型是已知大小的并可以储存在栈上,所以他们实现了`Copy` trait。当我们将`largest`函数改成使用泛型后,现在`list`参数的类型就有可能是没有实现`Copy` trait 的,这意味着我们可能不能将`list[0]`的值移动到`largest`变量中。
2017-03-30 17:19:45 +08:00
如果只想对实现了`Copy`的类型调用这些代码,可以在`T`的 trait bounds 中增加`Copy`!列表 10-15 中展示了一个可以编译的泛型版本的`largest`函数的完整代码,只要传递给`largest`的 slice 值的类型实现了`PartialOrd`和`Copy`这两个 trait, 例如`i32`和`char`:
2017-02-27 23:25:11 +08:00
< span class = "filename" > Filename: src/main.rs< / span >
```rust
use std::cmp::PartialOrd;
fn largest< T: PartialOrd + Copy > (list: & [T]) -> T {
let mut largest = list[0];
for & item in list.iter() {
if item > largest {
largest = item;
}
}
largest
}
fn main() {
let numbers = vec![34, 50, 25, 100, 65];
let result = largest(&numbers);
println!("The largest number is {}", result);
let chars = vec!['y', 'm', 'a', 'q'];
let result = largest(&chars);
println!("The largest char is {}", result);
}
```
2017-03-23 22:37:22 +08:00
< span class = "caption" > Listing 10-15: A working definition of the `largest`
function that works on any generic type that implements the `PartialOrd` and
`Copy` traits</ span >
2017-02-27 23:25:11 +08:00
如果并不希望限制`largest`函数只能用于实现了`Copy` trait 的类型,我们可以在`T`的 trait bounds 中指定`Clone`而不是`Copy`,并克隆 slice 的每一个值使得`largest`函数拥有其所有权。但是使用`clone`函数潜在意味着更多的堆分配,而且堆分配在涉及大量数据时可能会相当缓慢。另一种`largest`的实现方式是返回 slice 中一个`T`值的引用。如果我们将函数返回值从`T`改为`& T`并改变函数体使其能够返回一个引用,我们将不需要任何`Clone`或`Copy`的 trait bounds 而且也不会有任何的堆分配。尝试自己实现这种替代解决方式吧!
trait 和 trait bounds 让我们使用泛型类型参数来减少重复,并仍然能够向编译器明确指定泛型类型需要拥有哪些行为。因为我们向编译器提供了 trait bounds 信息, 它就可以检查代码中所用到的具体类型是否提供了正确的行为。在动态类型语言中, 如果我们尝试调用一个类型并没有实现的方法, 会在运行时出现错误。Rust 将这些错误移动到了编译时,甚至在代码能够运行之前就强迫我们修复错误。另外,我们也无需编写运行时检查行为的代码,因为在编译时就已经检查过了,这样相比其他那些不愿放弃泛型灵活性的语言有更好的性能。
2017-03-30 17:19:45 +08:00
这里还有一种泛型,我们一直在使用它甚至都没有察觉它的存在,这就是**生命周期**( *lifetimes*)。不同于其他泛型帮助我们确保类型拥有期望的行为,生命周期则有助于确保引用在我们需要他们的时候一直有效。让我们学习生命周期是如何做到这些的。