trpl-zh-cn/src/ch01-02-hello-world.md

271 lines
13 KiB
Markdown
Raw Normal View History

## Hello, World!
> [ch01-02-hello-world.md](https://github.com/rust-lang/book/blob/master/src/ch01-02-hello-world.md)
> <br>
2017-02-15 23:25:41 +08:00
> commit ccbeea7b9fe115cd545881618fe14229d18b307f
现在你已经安装好了 Rust让我们来编写你的第一个 Rust 程序。当学习一门新语言的时候,编写一个在屏幕上打印 “Hello, world!” 文本的小程序是一个传统,而在这一部分,我们将遵循这个传统。
> 注意本书假设你熟悉基本的命令行操作。Rust 本身并不对你的编辑器,工具和你的代码存放在何处有什么特定的要求,所以如果你比起命令行更喜欢 IDE请随意选择你喜欢的 IDE。
2017-02-15 23:25:41 +08:00
### 创建项目文件夹
2017-02-15 23:25:41 +08:00
首先,创建一个文件夹来编写 Rust 代码。Rust 并不关心你的代码存放在哪里,不过在本书中,我们建议在你的 home 目录创建一个**项目**目录,并把你的所有项目放在这。打开一个终端并输入如下命令来为这个项目创建一个文件夹:
Linux 和 Mac:
```sh
$ mkdir ~/projects
$ cd ~/projects
$ mkdir hello_world
$ cd hello_world
```
Windows:
```cmd
> mkdir %USERPROFILE%\projects
> cd %USERPROFILE%\projects
> mkdir hello_world
> cd hello_world
```
### 编写并运行 Rust 程序
接下来,创建一个新的叫做 *main.rs* 的源文件。Rust 文件总是以 *.rs* 后缀结尾。如果文件名多于一个单词,使用下划线分隔它们。例如,使用 *my_program.rs* 而不是 *myprogram.rs*
现在打开刚创建的 *main.rs* 文件,并输入如下代码:
<span class="filename">Filename: main.rs</span>
```rust
fn main() {
println!("Hello, world!");
}
```
保存文件,并回到终端窗口。在 Linux 或 OSX 上,输入如下命令:
```sh
$ rustc main.rs
$ ./main
Hello, world!
```
在 Windows 上,运行`.\main.exe`而不是`./main`。不管使用何种系统,你应该在终端看到`Hello, world!`字符串。如果你做到了,那么恭喜你!你已经正式编写了一个 Rust 程序。你是一名 Rust 程序员了!欢迎入坑。
### 分析 Rust 程序
现在让我们回过头来仔细看看你的“Hello, world!”程序到底发生了什么。这是谜题的第一片:
```rust
fn main() {
}
```
这几行定义了一个 Rust **函数**。`main` 函数是特殊的:这是每一个可执行的 Rust 程序首先运行的函数(译者注:入口点)。第一行表示“定义一个叫 `main` 的函数,没有参数也没有返回值。”如果有参数的话,它们应该出现在括号中,`(`和`)`。
同时注意函数体被包裹在大括号中,`{`和`}`。Rust 要求所有函数体都位于大括号中(译者注:对比有些语言特定情况可以省略大括号)。将前一个大括号与函数声明置于一行,并留有一个空格被认为是一个好的代码风格。
在`main()`函数中:
```rust
println!("Hello, world!");
```
这行代码做了这个小程序的所有工作:它在屏幕上打印文本。有很多需要注意的细节。第一个是 Rust 代码风格使用 4 个空格缩进,而不是 1 个制表符tab
2017-02-14 22:42:54 +08:00
第二个重要的部分是`println!()`。这叫做 Rust **宏**,是如何进行 Rust 元编程metaprogramming的关键所在。相反如果调用一个函数的话它应该看起来像这样`println`(没有`!`)。我们将在 24 章更加详细的讨论 Rust 宏,不过现在你只需记住当看到符号 `!` 的时候,就代表在调用一个宏而不是一个普通的函数。
2017-02-14 22:42:54 +08:00
接下来,`"Hello, world!"` 是一个 **字符串**。我们把这个字符串作为一个参数传递给`println!`,它负责在屏幕上打印这个字符串。轻松加愉快!(⊙o⊙)
这一行以一个分号结尾(`;`)。`;`代表这个表达式的结束和下一个表达式的开始。大部分 Rust 代码行以`;`结尾。
### 编译和运行是两个步骤
在“编写并运行 Rust 程序”部分,展示了如何运行一个新创建的程序。现在我们将拆分并检查每一步操作。
在运行一个 Rust 程序之前,必须编译它。可以输入`rustc`命令来使用 Rust 编译器并像这样传递你源文件的名字:
```sh
$ rustc main.rs
```
如果你来自 C 或 C++ 背景,你会发现这与`gcc`和`clang`类似。编译成功后Rust 应该会输出一个二进制可执行文件,在 Linux 或 OSX 上在 shell 中你可以通过`ls`命令看到如下:
```sh
$ ls
main main.rs
```
在 Windows 上,输入:
```cmd
> dir /B %= the /B option says to only show the file names =%
main.exe
main.rs
```
这表示我们有两个文件:*.rs* 后缀的源文件,和可执行文件(在 Windows下是 *main.exe*,其它平台是 *main*)。这里剩下的操作就只有运行 *main**main.exe* 文件了,像这样:
```sh
$ ./main # or .\main.exe on Windows
```
如果 *main.rs* 是我们的“Hello, world!”程序,它将会在终端上打印`Hello, world!`。
2017-02-14 22:42:54 +08:00
来自 Ruby、Python 或 JavaScript 这样的动态类型语言背景的同学可能不太习惯在分开的步骤编译和执行程序。Rust 是一种 **静态提前编译语言***ahead-of-time compiled language*),这意味着可以编译好程序后,把它给任何人,他们都不需要安装 Rust 就可运行。如果你给他们一个 `.rb` `.py``.js` 文件,他们需要先分别安装 RubyPythonJavaScript 实现运行时环境VM不过你只需要一句命令就可以编译和执行程序。这一切都是语言设计的权衡取舍。
仅仅使用`rustc`编译简单程序是没问题的,不过随着项目的增长,你将想要能够控制你项目拥有的所有选项,并使其易于分享你的代码给别人或别的项目。接下来,我们将介绍一个叫做 Cargo 的工具,它将帮助你编写现实生活中的 Rust 程序。
## Hello, Cargo!
2017-02-14 22:42:54 +08:00
Cargo 是 Rust 的构建系统和包管理工具,同时 Rustacean 们使用 Cargo 来管理它们的 Rust 项目因为它使得很多任务变得更轻松。例如Cargo负责构建代码、下载代码依赖的库并编译这些库。我们把代码需要的库叫做 **依赖***dependencies*)。
最简单的 Rust 程序,例如我们刚刚编写的,并没有任何依赖,所以目前我们只使用了 Cargo 负责构建代码的部分。随着你编写更加复杂的 Rust 程序,你会想要添加依赖,那么如果你使用 Cargo 开始的话,这将会变得简单许多。
2017-02-15 23:25:41 +08:00
由于绝大部分 Rust 项目使用 Cargo本书接下来的部分将假设你使用它。如果使用安装章节介绍的官方安装包的话Rust 自带 Cargo。如果通过其他方式安装 Rust 的话,可以在终端输入如下命令检查是否安装了 Cargo
```sh
$ cargo --version
```
如果看到了版本号,一切 OK如果出现一个类似“`command not found`”的错误,那么你应该查看安装方式的文档来确定如何单独安装 Cargo。
### 使用 Cargo 创建项目
让我们使用 Cargo 来创建一个新项目并看看与`hello_world`项目有什么不同。回到项目目录(或者任何你决定放置代码的目录):
Linux 和 Mac:
```sh
$ cd ~/projects
```
Windows:
```cmd
> cd %USERPROFILE%\projects
```
并在任何操作系统运行:
```sh
$ cargo new hello_cargo --bin
$ cd hello_cargo
```
2017-02-14 22:42:54 +08:00
我们向`cargo new`传递了`--bin`因为我们的目标是生成一个可执行程序,而不是一个库。可执行文件是二进制可执行文件,通常就叫做 **二进制文件***binaries*)。项目的名称被定为`hello_cargo`,同时 Cargo 在一个同名(子)目录中创建它的文件,接着我们可以进入查看。
如果列出 *hello_cargo* 目录中的文件,我们将会看到 Cargo 生成了两个文件和一个目录:一个 *Cargo.toml* 文件和一个 *src* 目录,*main.rs* 文件位于目录中。它也在 *hello_cargo* 目录初始化了一个 git 仓库,以及一个 *.gitignore* 文件;你可以改为使用不同的版本控制系统,或者不使用,通过`--vcs`参数。
使用你选择的文本编辑器IDE打开 *Cargo.toml* 文件。它应该看起来像这样:
<span class="filename">Filename: Cargo.toml</span>
```toml
[package]
name = "hello_cargo"
version = "0.1.0"
authors = ["Your Name <you@example.com>"]
[dependencies]
```
这个文件使用[*TOML*][toml]<!-- ignore --> (Tom's Obvious, Minimal Language) 格式。TOML 类似于 INI不过有一些额外的改进之处并且被用作 Cargo 的配置文件的格式。
[toml]: https://github.com/toml-lang/toml
第一行,`[package]`,是一个部分标题表明下面的语句用来配置一个包。随着我们在这个文件增加更多的信息,我们还会增加其他部分。
最后一行,`[dependencies]`,是列出项目依赖的 *crates*(我们这么称呼 Rust 代码的包)的部分的开始,这样 Cargo 也就知道去下载和编译它们。这个项目并不需要任何其他的 crate不过在猜猜看教程章节会需要。
现在看看 *src/main.rs*
```rust
fn main() {
println!("Hello, world!");
}
```
Cargo 为你生成了一个“Hello World!”,正如我们之前编写的那个!目前为止我们所见过的之前项目与 Cargo 生成的项目区别有:
- 代码位于 *src* 目录
- 项目根目录包含一个 *Cargo.toml* 配置文件
Cargo 期望源文件位于 src 目录,这样将项目根目录留给 README、license 信息、配置文件和其他跟代码无关的文件。这样Cargo 帮助你保持项目干净整洁。一切井井有条。
如果没有使用 Cargo 开始项目,正如我们在 *hello_world* 目录中的项目,可以把它转化为一个 Cargo 使用的项目,通过将代码放入 *src* 目录并创建一个合适的 *Cargo.toml*
### 构建并运行 Cargo 项目
现在让我们看看通过 Cargo 构建和运行 Hello World 程序有什么不同。为此,我们输入如下命令:
```
$ cargo build
Compiling hello_cargo v0.1.0 (file:///projects/hello_cargo)
```
这应该创建 *target/debug/hello_cargo*(或者在 Windows 上是 *target\debug\hello_cargo.exe*)可执行文件,可以通过这个命令运行:
```sh
$ ./target/debug/hello_cargo # or .\target\debug\hello_cargo.exe on Windows
Hello, world!
```
好的!如果一切顺利,`Hello, world!`应该再次打印在终端上。
第一次运行的时候也会使 Cargo 在项目根目录创建一个叫做 *Cargo.lock* 的新文件,它看起来像这样:
<span class="filename">Filename: Cargo.lock</span>
```toml
[root]
name = "hello_cargo"
version = "0.1.0"
```
Cargo 使用 *Cargo.lock* 来记录程序的依赖。这个项目并没有依赖,所以内容有一点稀少。事实上,你自己永远也不需要碰这个文件;仅仅让 Cargo 处理它就行了。
我们刚刚使用`cargo build`构建了项目并使用`./target/debug/hello_cargo`运行了它,不过也可以使用`cargo run`编译并运行:
```sh
$ cargo run
Running `target/debug/hello_cargo`
Hello, world!
```
注意这一次,并没有出现告诉我们 Cargo 正在编译 `hello_cargo` 的输出。Cargo 发现文件并没有被改变,所以只是运行了二进制文件。如果修改了源文件的话,将会出现像这样的输出:
```sh
$ cargo run
Compiling hello_cargo v0.1.0 (file:///projects/hello_cargo)
Running `target/debug/hello_cargo`
Hello, world!
```
所以又出现一些更多的不同:
- 使用`cargo build`构建项目(或使用`cargo run`一步构建并运行),而不是使用`rustc`
- 不同于将构建结果放在源码相同目录Cargo 会将它放到 *target/debug* 目录中的文件,我们将会看到
Cargo 的另一个有点是不管你使用什么操作系统它的命令都是一样的,所以之后我们将不再为 Linux 和 Mac 以及 Windows 提供特定的命令。
### 发布构建
当项目最终准备好发布了,可以使用`cargo build --release`来优化编译项目。这会在 *target/release* 下生成可执行文件,而不是 *target/debug*。这些优化可以让 Rust 代码运行的更快,不过启用他们会让程序花更长的时间编译。这也是为何这是两种不同的配置:一个为了开发,这时你经常想要快速重新构建;另一个构建提供给用户的最终程序,这时并不会重新构建并希望能运行得越快越好。如果你在测试代码的运行时间,请确保运行`cargo build --release`并使用 *target/release* 下的可执行文件进行测试。
### 把 Cargo 当作习惯
对于简单项目, Cargo 并不能比`rustc`提供更多的价值,不过随着开发的进行终将体现它的价值。对于拥有多个 crate 的复杂项目,可以仅仅运行`cargo build`,然后一切将有序运行。即便这个项目很简单,现在它使用了很多接下来你 Rust 程序生涯将会用到的实用工具。事实上,无形中你可以使用下面的命令开始所有你想要从事的项目:
```sh
$ git clone someurl.com/someproject
$ cd someproject
$ carg
```
> 注意:如果你想要查看 Cargo 的更多细节,请阅读官方的 [Cargo guide],它覆盖了其所有的功能。
[Cargo guide]: http://doc.crates.io/guide.html