trpl-zh-cn/src/ch16-04-extensible-concurrency-sync-and-send.md

41 lines
4.4 KiB
Markdown
Raw Normal View History

2017-03-22 15:30:00 +08:00
## 使用`Sync`和`Send` trait 的可扩展并发
> [ch16-04-extensible-concurrency-sync-and-send.md](https://github.com/rust-lang/book/blob/master/second-edition/src/ch16-04-extensible-concurrency-sync-and-send.md)
> <br>
2017-05-15 08:27:11 +08:00
> commit 9430a3d28a2121a938d704ce48b15d21062f880e
2017-03-22 15:30:00 +08:00
Rust 的并发模型中一个有趣的方面是:语言本身对并发知之**甚少**。我们之前讨论的几乎所有内容,都属于标准库,而不是语言本身的内容。由于不需要语言提供并发相关的基础设施,并发方案不受标准库或语言所限:我们可以编写自己的或使用别人编写的。
2017-03-22 15:30:00 +08:00
我们说“**几乎**所有内容都不属于语言本身”,那么属于语言本身的是什么呢?是两个 trait都位于`std::marker` `Sync`和`Send`。
2017-03-22 15:30:00 +08:00
### `Send`用于表明所有权可能被传送给其他线程
`Send`标记 trait 表明类型的所有权可能被在线程间传递。几乎所有的 Rust 类型都是`Send`的,不过有一些例外。比如标准库中提供的 `Rc<T>`:如果克隆`Rc<T>`值,并尝试将克隆的所有权传递给另一个线程,这两个线程可能会同时更新引用计数。正如上一部分提到的,`Rc<T>`被实现为用于单线程场景,这时不需要为拥有线程安全的引用计数而付出性能代价。
2017-03-22 15:30:00 +08:00
因为`Rc<T>`没有标记为`Send`Rust 的类型系统和 trait bound 会确保我们不会错误的把一个`Rc<T>`值不安全的在线程间传递。列表 16-14 曾尝试这么做,不过得到了一个错误,`the trait Send is not implemented for Rc<Mutex<i32>>`。当切换为标记为`Send`的`Arc<T>`时,就没有问题了。
2017-03-22 15:30:00 +08:00
任何完全由`Send`的类型组成的类型也会自动被标记为`Send`。几乎所有基本类型都是`Send`的,大部分标准库类型是`Send`的,除了`Rc<T>`以及第十九章将会讨论的裸指针raw pointer
2017-03-22 15:30:00 +08:00
### `Sync`表明多线程访问是安全的
`Sync`标记 trait 表明一个类型可以安全的在多个线程中拥有其值的引用。换一种方式来说就是,对于任意类型`T`,如果`&T``T`的引用)是`Send`的话`T`就是`Sync`的,这样其引用就可以安全的发送到另一个线程。类似于`Send`的情况,基本类型是`Sync`的,完全由`Sync`的类型组成的类型也是`Sync`的。
2017-03-22 15:30:00 +08:00
`Rc<T>`也不是`Sync`的,出于其不是`Send`的相同的原因。`RefCell<T>`(第十五章讨论过)和`Cell<T>`系列类型不是`Sync`的。`RefCell<T>`在运行时所进行的借用检查也不是线程安全的。`Mutex<T>`是`Sync`的,正如上一部分所讲的它可以被用来在多线程中共享访问。
### 手动实现`Send`和`Sync`是不安全的
通常并不需要实现`Send`和`Sync` trait由属于`Send`和`Sync`的类型组成的类型,自动就是`Send`和`Sync`的。因为他们是标记 trait甚至都不需要实现任何方法。他们只是用来加强并发相关的不可变性的。
2017-03-22 15:30:00 +08:00
实现这些标记 trait 涉及到编写不安全的 Rust 代码,第十九章将会讲述具体的方法;当前重要的是,在创建新的由不是`Send`和`Sync`的部分构成的并发类型时需要多加小心,以确保维持其安全保证。[The Nomicon] 中有更多关于这些保证以及如何维持他们的信息。
2017-03-22 15:30:00 +08:00
2017-05-15 08:27:11 +08:00
[The Nomicon]: https://doc.rust-lang.org/stable/nomicon/
2017-03-22 15:30:00 +08:00
## 总结
这不会是本书最后一个出现并发的章节;第二十章的项目会在更现实的场景中使用这些概念,而不像本章中讨论的这些小例子。
正如我们提到的,因为 Rust 本身很少有处理并发的部分内容,有很多的并发方案都由 crate 实现。他们比标准库要发展的更快;请在网上搜索当前最新的用于多线程场景的 crate。
Rust 提供了用于消息传递的通道,和像`Mutex<T>`和`Arc<T>`这样可以安全的用于并发上下文的智能指针。类型系统和借用检查器会确保这些场景中的代码,不会出现数据竞争和无效的引用。一旦代码可以编译了,我们就可以坚信这些代码可以正确的运行于多线程环境,而不会出现其他语言中经常出现的那些难以追踪的 bug。并发编程不再是什么可怕的概念无所畏惧地并发吧
2017-03-22 15:30:00 +08:00
接下来,让我们讨论一下当 Rust 程序变得更大时,有哪些符合语言习惯的问题建模方法和结构化解决方案,以及 Rust 的风格是如何与面向对象编程Object Oriented Programming中那些你所熟悉的概念相联系的。