mirror of
https://github.com/KaiserY/trpl-zh-cn
synced 2025-04-11 15:38:05 +08:00
check to ch03-02
This commit is contained in:
parent
dcf04d8ffa
commit
0f9f9d5554
@ -1,14 +1,14 @@
|
||||
## Hello, Cargo!
|
||||
|
||||
> [ch01-03-hello-cargo.md](https://github.com/rust-lang/book/blob/master/second-edition/src/ch01-03-hello-cargo.md)
|
||||
> [ch01-03-hello-cargo.md](https://github.com/rust-lang/book/blob/master/src/ch01-03-hello-cargo.md)
|
||||
> <br>
|
||||
> commit 7480e811ab5ad8d53a5b854d9b0c7a5a4f58499f
|
||||
> commit 1fedfc4b96c2017f64ecfcf41a0a07e2e815f24f
|
||||
|
||||
Cargo 是 Rust 的构建系统和包管理器。大多数 Rustacean 们使用 Cargo 来管理他们的 Rust 项目,因为它可以为你处理很多任务,比如构建代码、下载依赖库并编译这些库。(我们把代码所需要的库叫做 **依赖**(*dependencies*))。
|
||||
|
||||
最简单的 Rust 程序,比如我们刚刚编写的,没有任何依赖。所以如果使用 Cargo 来构建 Hello, world! 项目,将只会用到 Cargo 的构建代码那部分功能。随着编写的 Rust 程序更加复杂,你会添加依赖,如果你一开始就使用 Cargo 的话,添加依赖将会变得简单许多。
|
||||
最简单的 Rust 程序,比如我们刚刚编写的,没有任何依赖。所以如果使用 Cargo 来构建 Hello, world! 项目,将只会用到 Cargo 的构建代码那部分功能。如果编写更为复杂的 Rust 程序,你会添加依赖,这样如果你一开始就使用 Cargo 的话,添加依赖将会变得简单许多。
|
||||
|
||||
由于绝大多数 Rust 项目使用 Cargo,本书接下来的部分假设你也使用 Cargo。如果使用 “安装” 章节介绍的官方安装包的话,则自带了 Cargo。如果通过其他方式安装的话,可以在终端输入如下命令检查是否安装了 Cargo:
|
||||
由于绝大多数 Rust 项目使用 Cargo,本书接下来的部分假设你也使用 Cargo。如果使用 “安装” 部分介绍的官方安装包的话,则自带了 Cargo。如果通过其他方式安装的话,可以在终端输入如下命令检查是否安装了 Cargo:
|
||||
|
||||
```text
|
||||
$ cargo --version
|
||||
@ -21,17 +21,17 @@ $ cargo --version
|
||||
我们使用 Cargo 创建一个新项目,然后看看与上面的 Hello, world! 项目有什么不同。回到 *projects* 目录(或者你存放代码的目录)。接着,可在任何操作系统下运行以下命令:
|
||||
|
||||
```text
|
||||
$ cargo new hello_cargo --bin
|
||||
$ cargo new hello_cargo
|
||||
$ cd hello_cargo
|
||||
```
|
||||
|
||||
第一行命令新建了名为 *hello_cargo* 的二进制可执行程序。为 `cargo new` 传入 `--bin` 参数会生成一个可执行程序(通常就叫做 **二进制文件**,*binary*),而不是一个库。项目被命名为 `hello_cargo`,同时 Cargo 在一个同名目录中创建项目文件。
|
||||
第一行命令新建了名为 *hello_cargo* 的目录。我们将项目命名为 *hello_cargo*,同时 Cargo 在一个同名目录中创建项目文件。
|
||||
|
||||
进入 *hello_cargo* 目录并列出文件。将会看到 Cargo 生成了两个文件和一个目录:一个 *Cargo.toml* 文件,一个 *src* 目录,以及位于 *src* 目录中 *main.rs* 文件。它也在 *hello_cargo* 目录初始化了一个 git 仓库,以及一个 *.gitignore* 文件。
|
||||
|
||||
> 注意:Git 是一个常用的版本控制系统(version control system, VCS)。可以通过 `--vcs` 参数使 `cargo new` 切换到其它版本控制系统(VCS),或者不使用 VCS。运行 `cargo new --help` 参看可用的选项。
|
||||
|
||||
请选用文本编辑器打开 *Cargo.toml* 文件。它应该看起来如示例 1-2 所示:
|
||||
请自行选用文本编辑器打开 *Cargo.toml* 文件。它应该看起来如示例 1-2 所示:
|
||||
|
||||
<span class="filename">文件名: Cargo.toml</span>
|
||||
|
||||
@ -40,6 +40,7 @@ $ cd hello_cargo
|
||||
name = "hello_cargo"
|
||||
version = "0.1.0"
|
||||
authors = ["Your Name <you@example.com>"]
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
```
|
||||
@ -52,9 +53,9 @@ authors = ["Your Name <you@example.com>"]
|
||||
|
||||
第一行,`[package]`,是一个片段(section)标题,表明下面的语句用来配置一个包。随着我们在这个文件增加更多的信息,还将增加其他片段(section)。
|
||||
|
||||
接下来的三行设置了 Cargo 编译程序所需的配置:项目的名称、版本和作者。Cargo 从环境中获取你的名字和 email 信息,所以如果这些信息不正确,请修改并保存此文件。
|
||||
接下来的四行设置了 Cargo 编译程序所需的配置:项目的名称、版本和作者。Cargo 从环境中获取你的名字和 email 信息,所以如果这些信息不正确,请修改并保存此文件。附录 E 会介绍 `edition` 的值。
|
||||
|
||||
最后一行,`[dependencies]`,是罗列项目依赖的片段。在 Rust 中,代码包被称为 *crates*。这个项目并不需要其他的 crate,不过在第二章的第一个项目会用到依赖,那时会用得上这个片段。
|
||||
最后一行,`[dependencies]`,是罗列项目依赖的片段的开始。在 Rust 中,代码包被称为 *crates*。这个项目并不需要其他的 crate,不过在第二章的第一个项目会用到依赖,那时会用得上这个片段。
|
||||
|
||||
现在打开 *src/main.rs* 看看:
|
||||
|
||||
@ -85,7 +86,7 @@ $ cargo build
|
||||
这个命令会创建一个可执行文件 *target/debug/hello_cargo* (在 Windows 上是 *target\debug\hello_cargo.exe*),而不是放在目前目录下。可以通过这个命令运行可执行文件:
|
||||
|
||||
```text
|
||||
$ ./target/debug/hello_cargo # or .\target\debug\hello_cargo.exe on Windows
|
||||
$ ./target/debug/hello_cargo # 或者在 Windows 下为 .\target\debug\hello_cargo.exe
|
||||
Hello, world!
|
||||
```
|
||||
|
||||
@ -109,15 +110,16 @@ $ cargo run
|
||||
Running `target/debug/hello_cargo`
|
||||
Hello, world!
|
||||
```
|
||||
|
||||
Cargo 还提供了一个叫 `cargo check` 的命令。该命令快速检查代码确保其可以编译,但并不产生可执行文件:
|
||||
|
||||
```text
|
||||
$ cargo check
|
||||
Compiling hello_cargo v0.1.0 (file:///projects/hello_cargo)
|
||||
Checking hello_cargo v0.1.0 (file:///projects/hello_cargo)
|
||||
Finished dev [unoptimized + debuginfo] target(s) in 0.32 secs
|
||||
```
|
||||
|
||||
为什么你会不需要可执行文件呢?通常 `cargo check` 要比 `cargo build` 快得多,因为它省略了生成可执行文件的步骤。如果编写代码时持续的进行检查,`cargo check` 会加速开发!为此很多 Rustaceans 编写代码时定期运行 `cargo check` 确保它们可以编译。当准备好使用可执行文件时才运行 `cargo build`。
|
||||
为什么你会不需要可执行文件呢?通常 `cargo check` 要比 `cargo build` 快得多,因为它省略了生成可执行文件的步骤。如果你在编写代码时持续的进行检查,`cargo check` 会加速开发!为此很多 Rustaceans 编写代码时定期运行 `cargo check` 确保它们可以编译。当准备好使用可执行文件时才运行 `cargo build`。
|
||||
|
||||
我们回顾下已学习的 Cargo 内容:
|
||||
|
||||
@ -125,7 +127,7 @@ $ cargo check
|
||||
* 可以使用 `cargo run` 一步构建并运行项目。
|
||||
* 有别于将构建结果放在与源码相同的目录,Cargo 会将其放到 *target/debug* 目录。
|
||||
|
||||
使用 Cargo 的一个额外的优点是,不管你使用什么操作系统,其命令都是一样的。所以从此以后本书将不再为 Linux 和 macOS 以及 Windows 提供相应的命令。
|
||||
使用 Cargo 的一个额外的优点是,不管你使用什么操作系统,其命令都是一样的。所以从现在开始本书将不再为 Linux 和 macOS 以及 Windows 提供相应的命令。
|
||||
|
||||
### 发布(release)构建
|
||||
|
||||
@ -149,7 +151,7 @@ $ cargo build
|
||||
|
||||
## 总结
|
||||
|
||||
你已经踏上了 Rust 之旅!在本章中,你学习了如何:
|
||||
你已经准备好开启 Rust 之旅了!在本章中,你学习了如何:
|
||||
|
||||
* 使用 `rustup` 安装最新稳定版的 Rust
|
||||
* 更新到新版的 Rust
|
||||
@ -157,4 +159,4 @@ $ cargo build
|
||||
* 直接通过 `rustc` 编写并运行 Hello, world! 程序
|
||||
* 使用 Cargo 创建并运行新项目
|
||||
|
||||
是时候通过构建更真实的程序来熟悉读写 Rust 代码了。所以在下一章,我们会构建一个猜猜看游戏程序。如果你更愿意从学习 Rust 常用的编程概念开始,请阅读第三章,接着再回到第二章。
|
||||
是时候通过构建更实质性的程序来熟悉读写 Rust 代码了。所以在第二章我们会构建一个猜猜看游戏程序。如果你更愿意从学习 Rust 常用的编程概念开始,请阅读第三章,接着再回到第二章。
|
||||
|
@ -1,8 +1,8 @@
|
||||
# 编写 猜猜看 游戏
|
||||
|
||||
> [ch02-00-guessing-game-tutorial.md](https://github.com/rust-lang/book/blob/master/second-edition/src/ch02-00-guessing-game-tutorial.md)
|
||||
> [ch02-00-guessing-game-tutorial.md](https://github.com/rust-lang/book/blob/master/src/ch02-00-guessing-game-tutorial.md)
|
||||
> <br>
|
||||
> commit 7480e811ab5ad8d53a5b854d9b0c7a5a4f58499f
|
||||
> commit a86c1d315789b3ca13b20d50ad5005c62bdd9e37
|
||||
|
||||
让我们一起动手完成一个项目,来快速上手 Rust!本章将介绍 Rust 中一些常用概念,并通过真实的程序来展示如何运用它们。你将会学到 `let`、`match`、方法、关联函数、外部 crate 等知识!后续章节会深入探讨这些概念的细节。在这一章,我们将做基础练习。
|
||||
|
||||
@ -13,11 +13,11 @@
|
||||
要创建一个新项目,进入第一章中创建的 *projects* 目录,使用 Cargo 新建一个项目,如下:
|
||||
|
||||
```text
|
||||
$ cargo new guessing_game --bin
|
||||
$ cargo new guessing_game
|
||||
$ cd guessing_game
|
||||
```
|
||||
|
||||
第一个命令,`cargo new`,它获取项目的名称(`guessing_game`)作为第一个参数。`--bin` 参数告诉 Cargo 创建一个二进制项目,与第一章类似。第二个命令进入到新创建的项目目录。
|
||||
第一个命令,`cargo new`,它获取项目的名称(`guessing_game`)作为第一个参数。第二个命令进入到新创建的项目目录。
|
||||
|
||||
看看生成的 *Cargo.toml* 文件:
|
||||
|
||||
@ -119,7 +119,7 @@ println!("Please input your guess.");
|
||||
let mut guess = String::new();
|
||||
```
|
||||
|
||||
现在程序开始变得有意思了!这一小行代码发生了很多事。注意这是一个 `let` 语句,用来创建 **变量**。这里是另外一个例子:
|
||||
现在程序开始变得有意思了!这一小行代码发生了很多事。注意这是一个 `let` 语句,用来创建 **变量**(*variable*)。这里是另外一个例子:
|
||||
|
||||
```rust,ignore
|
||||
let foo = bar;
|
||||
@ -128,11 +128,11 @@ let foo = bar;
|
||||
这行代码新建了一个叫做 `foo` 的变量并把它绑定到值 `bar` 上。在 Rust 中,变量默认是不可变的。我们将会在第三章的 “变量与可变性” 部分详细讨论这个概念。下面的例子展示了如何在变量名前使用 `mut` 来使一个变量可变:
|
||||
|
||||
```rust,ignore
|
||||
let foo = 5; // immutable
|
||||
let mut bar = 5; // mutable
|
||||
let foo = 5; // 不可变
|
||||
let mut bar = 5; // 可变
|
||||
```
|
||||
|
||||
> 注意:`//` 语法开始一个注释,持续到行尾。Rust 忽略注释中的所有内容,将在第三章中详细介绍注释。
|
||||
> 注意:`//` 语法开始一个注释,持续到行尾。Rust 忽略注释中的所有内容,第三章将会详细介绍注释。
|
||||
|
||||
让我们回到猜猜看程序中。现在我们知道了 `let mut guess` 会引入一个叫做 `guess` 的可变变量。等号(`=`)的右边是 `guess` 所绑定的值,它是 `String::new` 的结果,这个函数会返回一个 `String` 的新实例。[`String`][string]<!-- ignore --> 是一个标准库提供的字符串类型,它是 UTF-8 编码的可增长文本块。
|
||||
|
||||
@ -214,7 +214,7 @@ Rust 警告我们没有使用 `read_line` 的返回值 `Result`,说明有一
|
||||
|
||||
### 使用 `println!` 占位符打印值
|
||||
|
||||
除了位于结尾的大括号,目前为止就只有一行代码值得讨论一下了,就是这一行:
|
||||
除了位于结尾的大括号,目前为止就只有这一行代码值得讨论一下了,就是这一行:
|
||||
|
||||
```rust,ignore
|
||||
println!("You guessed: {}", guess);
|
||||
@ -295,9 +295,9 @@ $ cargo build
|
||||
|
||||
在更新完 registry 后,Cargo 检查 `[dependencies]` 片段并下载缺失的 crate 。本例中,虽然只声明了 `rand` 一个依赖,然而 Cargo 还是额外获取了 `libc` 的拷贝,因为 `rand` 依赖 `libc` 来正常工作。下载完成后,Rust 编译依赖,然后使用这些依赖编译项目。
|
||||
|
||||
如果不做任何修改,立刻再次运行 `cargo build`,则不会看到任何除了 `Finished` 完成提示之外的输出。Cargo 知道它已经下载并编译了依赖,同时 *Cargo.toml* 文件也没有变动。Cargo 还知道代码也没有任何修改,所以它不会重新编译代码。因为无事可做,它简单的退出了。
|
||||
如果不做任何修改,立刻再次运行 `cargo build`,则不会看到任何除了 `Finished` 行之外的输出。Cargo 知道它已经下载并编译了依赖,同时 *Cargo.toml* 文件也没有变动。Cargo 还知道代码也没有任何修改,所以它不会重新编译代码。因为无事可做,它简单的退出了。
|
||||
|
||||
如果打开 *src/main.rs* 文件,做一些无关紧要的修改,保存并再次构建,只会出现两行输出:
|
||||
如果打开 *src/main.rs* 文件,做一些无关紧要的修改,保存并再次构建,则会出现两行输出:
|
||||
|
||||
```text
|
||||
$ cargo build
|
||||
@ -311,7 +311,7 @@ $ cargo build
|
||||
|
||||
Cargo 有一个机制来确保任何人在任何时候重新构建代码,都会产生相同的结果:Cargo 只会使用你指定的依赖版本,除非你又手动指定了别的。例如,如果下周 `rand` crate 的 `0.3.15` 版本出来了,它修复了一个重要的 bug,同时也含有一个会破坏代码运行的缺陷,这时会发生什么呢?
|
||||
|
||||
这个问题的答案是 *Cargo.lock* 文件。它在第一次运行 `cargo build` 时创建,并放在 *guessing_game* 目录。当第一次构建项目时,Cargo 计算出所有符合要求的依赖版本并写入 *Cargo.lock* 文件。当将来构建项目时,Cargo 会发现 *Cargo.lock* 已存在并使用其中指定的版本,而不是再次计算所有的版本。这使得你拥有了一个自动化的可重现的构建。换句话说,项目会持续使用 `0.3.14` 直到你显式升级,感谢 *Cargo.lock* 文件。
|
||||
这个问题的答案是 *Cargo.lock* 文件。它在第一次运行 `cargo build` 时创建,并放在 *guessing_game* 目录。当第一次构建项目时,Cargo 计算出所有符合要求的依赖版本并写入 *Cargo.lock* 文件。当将来构建项目时,Cargo 会发现 *Cargo.lock* 已存在并使用其中指定的版本,而不是再次计算所有的版本。这使得你拥有了一个自动化的可重现的构建。换句话说,项目会持续使用 `0.3.14` 直到你显式升级,多亏有了 *Cargo.lock* 文件。
|
||||
|
||||
#### 更新 crate 到一个新版本
|
||||
|
||||
@ -337,20 +337,18 @@ rand = "0.4.0"
|
||||
|
||||
下一次运行 `cargo build` 时,Cargo 会从 registry 更新可用的 crate,并根据你指定的新版本重新计算。
|
||||
|
||||
第十四章会讲到 [Cargo][doccargo]<!-- ignore --> 及其[生态系统][doccratesio]<!-- ignore -->的更多内容,不过目前你只需要了解这么多。通过 Cargo 复用库文件非常容易,因此 Rustacean 能够编写出由很多包组装而成的更轻巧的项目。
|
||||
第十四章会讲到 [Cargo][doccargo]<!-- ignore --> 及其[生态系统][doccratesio]<!-- ignore --> 的更多内容,不过目前你只需要了解这么多。通过 Cargo 复用库文件非常容易,因此 Rustacean 能够编写出由很多包组装而成的更轻巧的项目。
|
||||
|
||||
[doccargo]: http://doc.crates.io
|
||||
[doccratesio]: http://doc.crates.io/crates-io.html
|
||||
|
||||
### 生成一个随机数
|
||||
|
||||
你已经把 `rand` crate 添加到 *Cargo.toml* 了,让我们开始 **使用** `rand` 吧。下一步是更新 *src/main.rs*,如示例 2-3 所示:
|
||||
你已经把 `rand` crate 添加到 *Cargo.toml* 了,让我们开始 **使用** `rand` 吧。下一步是更新 *src/main.rs*,如示例 2-3 所示。
|
||||
|
||||
<span class="filename">文件名: src/main.rs</span>
|
||||
|
||||
```rust,ignore
|
||||
extern crate rand;
|
||||
|
||||
use std::io;
|
||||
use rand::Rng;
|
||||
|
||||
@ -378,11 +376,11 @@ fn main() {
|
||||
|
||||
接下来增加了另一行 `use`:`use rand::Rng`。`Rng` 是一个 trait,它定义了随机数生成器应实现的方法,想使用这些方法的话,此 trait 必须在作用域中。第十章会详细介绍 trait。
|
||||
|
||||
另外,中间还新增加了两行。`rand::thread_rng` 函数提供实际使用的随机数生成器:它位于当前执行线程本地,并从操作系统获取 seed。接下来,调用随机数生成器的 `gen_range` 方法。这个方法由刚才引入到作用域的 `Rng` trait 定义。`gen_range` 方法获取两个数字作为参数,并生成一个范围在两者之间的随机数。它包含下限但不包含上限,所以需要指定 `1` 和 `101` 来请求一个 1 和 100 之间的数。
|
||||
另外,中间还新增加了两行。`rand::thread_rng` 函数提供实际使用的随机数生成器:它位于当前执行线程的本地环境中,并从操作系统获取 seed。接下来,调用随机数生成器的 `gen_range` 方法。这个方法由刚才引入到作用域的 `Rng` trait 定义。`gen_range` 方法获取两个数字作为参数,并生成一个范围在两者之间的随机数。它包含下限但不包含上限,所以需要指定 `1` 和 `101` 来请求一个 1 和 100 之间的数。
|
||||
|
||||
> 注意:你不可能凭空就知道应该 use 哪个 trait 以及该从 crate 中调用哪个方法。crate 的使用说明位于其文档中。Cargo 有一个很棒的功能是:运行 `cargo doc --open` 命令来构建所有本地依赖提供的文档,并在浏览器中打开。例如,假设你对 `rand` crate 中的其他功能感兴趣,你可以运行 `cargo doc --open` 并点击左侧导航栏中的 `rand`。
|
||||
|
||||
新增加的第二行代码打印出了秘密数字。这在开发程序时很有用,因为可以测试它,不过在最终版本中会删掉它。游戏一开始就打印出结果就没什么可玩的了!
|
||||
新增加的第二行代码打印出了秘密数字。这在开发程序时很有用,因为可以测试它,不过在最终版本中会删掉它。如果游戏一开始就打印出结果就没什么可玩的了!
|
||||
|
||||
尝试运行程序几次:
|
||||
|
||||
@ -500,13 +498,13 @@ let guess: u32 = guess.trim().parse()
|
||||
|
||||
这里创建了一个叫做 `guess` 的变量。不过等等,不是已经有了一个叫做 `guess` 的变量了吗?确实如此,不过 Rust 允许用一个新值来 **隐藏** (*shadow*) `guess` 之前的值。这个功能常用在需要转换值类型之类的场景。它允许我们复用 `guess` 变量的名字,而不是被迫创建两个不同变量,诸如 `guess_str` 和 `guess` 之类。(第三章会介绍 shadowing 的更多细节。)
|
||||
|
||||
我们将 `guess` 绑定到 `guess.trim().parse()` 表达式上。表达式中的 `guess` 是包含输入的原始 `String` 类型。`String` 实例的 `trim` 方法会去除字符串开头和结尾的空白字符。`u32` 只能由数字字符转换,不过用户必须输入 <span class="keystroke">return</span> 键才能让 `read_line` 返回,然而用户按下 <span class="keystroke">return</span> 键时,会在字符串中增加一个换行(newline)符。例如,用户输入 <span class="keystroke">5</span> 并按下 <span class="keystroke">return</span>,`guess` 看起来像这样:`5\n`。`\n` 代表 “换行”,回车键。`trim` 方法消除 `\n`,只留下`5`。
|
||||
我们将 `guess` 绑定到 `guess.trim().parse()` 表达式上。表达式中的 `guess` 是包含输入的原始 `String` 类型。`String` 实例的 `trim` 方法会去除字符串开头和结尾的空白字符。`u32` 只能由数字字符转换,不过用户必须输入 <span class="keystroke">enter</span> 键才能让 `read_line` 返回,然而用户按下 <span class="keystroke">enter</span> 键时,会在字符串中增加一个换行(newline)符。例如,用户输入 <span class="keystroke">5</span> 并按下 <span class="keystroke">enter</span>,`guess` 看起来像这样:`5\n`。`\n` 代表 “换行”,回车键。`trim` 方法消除 `\n`,只留下 `5`。
|
||||
|
||||
[字符串的 `parse` 方法][parse]<!-- ignore --> 将字符串解析成数字。因为这个方法可以解析多种数字类型,因此需要告诉 Rust 具体的数字类型,这里通过 `let guess: u32` 指定。`guess` 后面的冒号(`:`)告诉 Rust 我们指定了变量的类型。Rust 有一些内建的数字类型;`u32` 是一个无符号的 32 位整型。对于不大的正整数来说,它是不错的类型,第三章还会讲到其他数字类型。另外,程序中的 `u32` 注解以及与 `secret_number` 的比较,意味着 Rust 会推断出 `secret_number` 也是 `u32` 类型。现在可以使用相同类型比较两个值了!
|
||||
|
||||
[parse]: https://doc.rust-lang.org/std/primitive.str.html#method.parse
|
||||
|
||||
`parse` 调用很容易产生错误。例如,字符串中包含 `A👍%`,就无法将其转换为一个数字。因此,`parse` 方法返回一个 `Result` 类型。像之前 “使用 `Result` 类型来处理潜在的错误” 讨论的 `read_line` 方法那样,再次按部就班的用 `expect` 方法处理即可。如果 `parse` 不能从字符串生成一个数字,返回一个 `Result::Err` 时,`expect` 会使游戏崩溃并打印附带的信息。如果 `parse` 成功地将字符串转换为一个数字,它会返回 `Result::Ok`,然后 `expect` 会返回 `Ok` 中的数字。
|
||||
`parse` 调用很容易产生错误。例如,字符串中包含 `A👍%`,就无法将其转换为一个数字。因此,`parse` 方法返回一个 `Result` 类型。像之前 “使用 `Result` 类型来处理潜在的错误” 讨论的 `read_line` 方法那样,再次按部就班的用 `expect` 方法处理即可。如果 `parse` 不能从字符串生成一个数字,返回一个 `Result` 的 `Err` 成员时,`expect` 会使游戏崩溃并打印附带的信息。如果 `parse` 成功地将字符串转换为一个数字,它会返回 `Result` 的 `Ok` 成员,然后 `expect` 会返回 `Ok` 值中的数字。
|
||||
|
||||
现在让我们运行程序!
|
||||
|
||||
@ -552,7 +550,7 @@ Too big!
|
||||
}
|
||||
```
|
||||
|
||||
如上所示,我们将提示用户猜测之后的所有内容放入了循环。确保 loop 循环中的代码多缩进四个空格,再次运行程序。注意这里有一个新问题,因为程序忠实地执行了我们的要求:永远地请求另一个猜测,用户好像没法退出啊!
|
||||
如上所示,我们将提示用户猜测之后的所有内容放入了循环。确保 loop 循环中的代码多缩进四个空格,再次运行程序。注意这里有一个新问题,因为程序忠实地执行了我们的要求:永远地请求另一个猜测,用户好像无法退出啊!
|
||||
|
||||
用户总能使用 <span class="keystroke">ctrl-c</span> 终止程序。不过还有另一个方法跳出无限循环,就是 “比较猜测与秘密数字” 部分提到的 `parse`:如果用户输入的答案不是一个数字,程序会崩溃。用户可以利用这一点来退出,如下所示:
|
||||
|
||||
@ -666,8 +664,6 @@ You win!
|
||||
<span class="filename">文件名: src/main.rs</span>
|
||||
|
||||
```rust,ignore
|
||||
extern crate rand;
|
||||
|
||||
use std::io;
|
||||
use std::cmp::Ordering;
|
||||
use rand::Rng;
|
||||
|
@ -1,13 +1,41 @@
|
||||
# 通用编程概念
|
||||
|
||||
> [ch03-00-common-programming-concepts.md](https://github.com/rust-lang/book/blob/master/second-edition/src/ch03-00-common-programming-concepts.md)
|
||||
> [ch03-00-common-programming-concepts.md](https://github.com/rust-lang/book/blob/master/src/ch03-00-common-programming-concepts.md)
|
||||
> <br>
|
||||
> commit b64de01431cdf1020ad3358d2f83e46af68a39ed
|
||||
> commit 1fedfc4b96c2017f64ecfcf41a0a07e2e815f24f
|
||||
|
||||
本章介绍一些几乎所有编程语言都有的概念,以及它们在 Rust 中是如何工作的。很多编程语言的核心概念都是共通的,本章中展示的概念都不是 Rust 所特有的,不过我们会在 Rust 上下文中讨论它们,并解释使用这些概念的惯例。
|
||||
|
||||
具体来说,我们将会学习变量、基本类型、函数、注释和控制流。每一个 Rust 程序中都会用到这些基础知识,提早学习这些概念会让你在起步时就打下坚实的基础。
|
||||
|
||||
> ### 关键字
|
||||
>
|
||||
> Rust 语言有一组保留的 **关键字**(*keywords*),就像大部分语言一样,它们只能由语言本身使用。记住,你不能使用这些关键字作为变量或函数的名称。大部分关键字有特殊的意义,你将在你的 Rust 程序中使用它们完成各种任务;一些关键字目前没有相应的功能,是为将来可能添加的功能保留的。可以在附录 A 中找到关键字的列表。
|
||||
## 关键字
|
||||
|
||||
Rust 语言有一组保留的 **关键字**(*keywords*),就像大部分语言一样,它们只能由语言本身使用。记住,你不能使用这些关键字作为变量或函数的名称。大部分关键字有特殊的意义,你将在 Rust 程序中使用它们完成各种任务;一些关键字目前没有相应的功能,是为将来可能添加的功能保留的。可以在附录 A 中找到关键字的列表。
|
||||
|
||||
## 标识符
|
||||
|
||||
这里我们将对本书中的一些概念做一些解释:变量、函数、结构体等等。所有这些都需要名称。Rust 中的名称被称为 “标识符”(“identifier”),它们可以是任意非空的 ASCII 字符串,不过有如下限制:
|
||||
|
||||
要么是:
|
||||
|
||||
* 第一个字符是字母。
|
||||
* 其它字符是字母数字或者 _。
|
||||
|
||||
或者是:
|
||||
|
||||
* 第一个字符是 _。
|
||||
* 标识符需多于一个字符。单独的 _ 不是标识符。
|
||||
* 其它字符是字母数字或者 _。
|
||||
|
||||
### 原始标识符
|
||||
|
||||
有时出于某种原因你可能需要将关键字作为名称。比如你需要调用 C 语言库中名为 *match* 的函数,在 C 语言中 *match* 不是关键字。为此你可以使用 “原始标识符”(“raw identifier”)。原始标识符以 `r#` 开头:
|
||||
|
||||
```rust,ignore
|
||||
let r#fn = "this variable is named 'fn' even though that's a keyword";
|
||||
|
||||
// 调用名为 'match' 的函数
|
||||
r#match();
|
||||
```
|
||||
|
||||
你无需经常用到原始标识符,但是当你 **真正** 需要它们时可以这么做。
|
@ -1,18 +1,18 @@
|
||||
## 变量和可变性
|
||||
|
||||
> [ch03-01-variables-and-mutability.md](https://github.com/rust-lang/book/blob/master/second-edition/src/ch03-01-variables-and-mutability.md)
|
||||
> [ch03-01-variables-and-mutability.md](https://github.com/rust-lang/book/blob/master/src/ch03-01-variables-and-mutability.md)
|
||||
> <br>
|
||||
> commit f949ff883628db8ed2f2f5f19e146ebf19ed6a6f
|
||||
> commit a86c1d315789b3ca13b20d50ad5005c62bdd9e37
|
||||
|
||||
第二章中提到过,变量默认是不可改变的(immutable)。这是推动你以充分利用 Rust 提供的安全性和简单并发性编写代码的众多方式之一。不过,你仍然可以使用可变变量。让我们探讨一下 Rust 拥抱不可变性的原因及方法,以及何时你不想使用不可变性。
|
||||
第二章中提到过,变量默认是不可改变的(immutable)。这是推动你以充分利用 Rust 提供的安全性和简单并发性来编写代码的众多方式之一。不过,你仍然可以使用可变变量。让我们探讨一下 Rust 拥抱不可变性的原因及方法,以及何时你不想使用不可变性。
|
||||
|
||||
当变量不可变时,一旦值被绑定一个名称上,你就不能改变这个值。为了对此进行说明,使用 `cargo new --bin variables` 命令在 *projects* 目录生成一个叫做 *variables* 的新项目。
|
||||
当变量不可变时,一旦值被绑定一个名称上,你就不能改变这个值。为了对此进行说明,使用 `cargo new variables` 命令在 *projects* 目录生成一个叫做 *variables* 的新项目。
|
||||
|
||||
接着,在新建的 *variables* 目录,打开 *src/main.rs* 并将代码替换为如下代码,这些代码还不能编译:
|
||||
|
||||
<span class="filename">文件名: src/main.rs</span>
|
||||
|
||||
```rust,ignore
|
||||
```rust,ignore,does_not_compile
|
||||
fn main() {
|
||||
let x = 5;
|
||||
println!("The value of x is: {}", x);
|
||||
@ -40,7 +40,7 @@ error[E0384]: cannot assign twice to immutable variable `x`
|
||||
|
||||
在尝试改变预设为不可变的值时,产生编译时错误是很重要的,因为这种情况可能导致 bug。如果一部分代码假设一个值永远也不会改变,而另一部分代码改变了这个值,第一部分代码就有可能以不可预料的方式运行。不得不承认这种 bug 的起因难以跟踪,尤其是第二部分代码只是 **有时** 会改变值。
|
||||
|
||||
Rust 编译器保证,如果声明一个值不会变,它就真的不会变。这意味着当阅读和编写代码时,不需要追踪一个值如何以及哪里可能会被改变,从而使得代码易于推导。
|
||||
Rust 编译器保证,如果声明一个值不会变,它就真的不会变。这意味着当阅读和编写代码时,不需要追踪一个值如何和在哪可能会被改变,从而使得代码易于推导。
|
||||
|
||||
不过可变性也是非常有用的。变量只是默认不可变;正如在第二章所做的那样,你可以在变量名之前加 `mut` 来使其可变。除了允许改变值之外,`mut` 向读者表明了其他代码将会改变这个变量值的意图。
|
||||
|
||||
@ -84,7 +84,7 @@ The value of x is: 6
|
||||
|
||||
最后一个区别是,常量只能被设置为常量表达式,而不能是函数调用的结果,或任何其他只能在运行时计算出的值。
|
||||
|
||||
这是一个声明常量的例子,它的名称是 `MAX_POINTS`,值是 100,000。(Rust 常量的命名规范是使用下划线分隔的大写字母):
|
||||
这是一个声明常量的例子,它的名称是 `MAX_POINTS`,值是 100,000。(Rust 常量的命名规范是使用下划线分隔的大写字母单词,并且可以在数字字面值中插入下划线来提升可读性):
|
||||
|
||||
```rust
|
||||
const MAX_POINTS: u32 = 100_000;
|
||||
@ -133,7 +133,7 @@ let spaces = spaces.len();
|
||||
|
||||
这里允许第一个 `spaces` 变量是字符串类型,而第二个 `spaces` 变量,它是一个恰巧与第一个变量同名的崭新变量,是数字类型。隐藏使我们不必使用不同的名字,如 `spaces_str` 和 `spaces_num`;相反,我们可以复用 `spaces` 这个更简单的名字。然而,如果尝试使用 `mut`,将会得到一个编译时错误,如下所示:
|
||||
|
||||
```rust,ignore
|
||||
```rust,ignore,does_not_compile
|
||||
let mut spaces = " ";
|
||||
spaces = spaces.len();
|
||||
```
|
||||
|
@ -1,10 +1,10 @@
|
||||
## 数据类型
|
||||
|
||||
> [ch03-02-data-types.md](https://github.com/rust-lang/book/blob/master/second-edition/src/ch03-02-data-types.md)
|
||||
> [ch03-02-data-types.md](https://github.com/rust-lang/book/blob/master/src/ch03-02-data-types.md)
|
||||
> <br>
|
||||
> commit f949ff883628db8ed2f2f5f19e146ebf19ed6a6f
|
||||
> commit a86c1d315789b3ca13b20d50ad5005c62bdd9e37
|
||||
|
||||
在 Rust 中,每一个值都属于某一个 **数据类型**(*data type*),这告诉 Rust 它被指定为何种数据,以便明确数据处理方式。我们将看到两类数据类型:标量(scalar)和复合(compound)。
|
||||
在 Rust 中,每一个值都属于某一个 **数据类型**(*data type*),这告诉 Rust 它被指定为何种数据,以便明确数据处理方式。我们将看到两类数据类型子集:标量(scalar)和复合(compound)。
|
||||
|
||||
记住,Rust 是 **静态类型**(*statically typed*)语言,也就是说在编译时就必须知道所有变量的类型。根据值及其使用方式,编译器通常可以推断出我们想要用的类型。当多种类型均有可能时,比如第二章的 “比较猜测的数字和秘密数字” 使用 `parse` 将 `String` 转换为数字时,必须增加类型注解,像这样:
|
||||
|
||||
@ -65,6 +65,12 @@ error[E0282]: type annotations needed
|
||||
|
||||
那么该使用哪种类型的数字呢?如果拿不定主意,Rust 的默认类型通常就很好,数字类型默认是 `i32`:它通常是最快的,甚至在 64 位系统上也是。`isize` 或 `usize` 主要作为某些集合的索引。
|
||||
|
||||
##### 整型溢出
|
||||
|
||||
比方说有一个 `u8` ,它可以存放从零到 `255` 的值。那么当你将其修改为 `256` 时会发生什么呢?这被称为 “整型溢出”(“integer overflow” ),关于这一行为 Rust 有一些有趣的规则。当在 debug 模式编译时,Rust 检查这类问题并使程序 *panic*,这个术语被 Rust 用来表明程序因错误而退出。第九章会详细介绍 panic。
|
||||
|
||||
在 release 构建中,Rust 不检测溢出,相反会进行一种被称为 “two’s complement wrapping” 的操作。简而言之,`256` 变成 `0`,`257` 变成 `1`,依此类推。依赖溢出被认为是一种错误,即便可能出现这种行为。如果你确实需要这种行为,标准库中有一个类型显式提供此功能,`Wrapping`。
|
||||
|
||||
#### 浮点型
|
||||
|
||||
Rust 也有两个原生的 **浮点数**(*floating-point numbers*)类型,它们是带小数点的数字。Rust 的浮点数类型是 `f32` 和 `f64`,分别占 32 位和 64 位。默认类型是 `f64`,因为在现代 CPU 中,它与 `f32` 速度几乎一样,不过精度更高。
|
||||
@ -217,6 +223,14 @@ let months = ["January", "February", "March", "April", "May", "June", "July",
|
||||
"August", "September", "October", "November", "December"];
|
||||
```
|
||||
|
||||
数组的类型比较有趣;它看起来像 `[type; number]`。例如:
|
||||
|
||||
```rust
|
||||
let a: [i32; 5] = [1, 2, 3, 4, 5];
|
||||
```
|
||||
|
||||
首先是方括号;这看起来像创建数组的语法。其中有两部分由分号分割的信息。第一部分是数组中每个元素的类型。因为所有元素都是相同类型的,所以只需列出一次。分号之后,是一个表示数组长度的数字。因为数组是固定长度的,该数字也一直保持不变,即便数组的元素被修改,它也不会增长火缩小。
|
||||
|
||||
##### 访问数组元素
|
||||
|
||||
数组是一整块分配在栈上的内存。可以使用索引来访问数组的元素,像这样:
|
||||
|
Loading…
Reference in New Issue
Block a user