mirror of
https://github.com/KaiserY/trpl-zh-cn
synced 2024-11-09 08:51:18 +08:00
fix typo
This commit is contained in:
parent
153d3c9d08
commit
46e3393e75
@ -205,11 +205,11 @@ fn read_username_from_file() -> Result<String, io::Error> {
|
|||||||
|
|
||||||
首先让我们看看函数的返回值:`Result<String, io::Error>`。这意味着函数返回一个 `Result<T, E>` 类型的值,其中泛型参数 `T` 的具体类型是 `String`,而 `E` 的具体类型是 `io::Error`。如果这个函数没有出任何错误成功返回,函数的调用者会收到一个包含 `String` 的 `Ok` 值————函数从文件中读取到的用户名。如果函数遇到任何错误,函数的调用者会收到一个 `Err` 值,它储存了一个包含更多这个问题相关信息的 `io::Error` 实例。这里选择 `io::Error` 作为函数的返回值是因为它正好是函数体中那两个可能会失败的操作的错误返回值:`File::open` 函数和 `read_to_string` 方法。
|
首先让我们看看函数的返回值:`Result<String, io::Error>`。这意味着函数返回一个 `Result<T, E>` 类型的值,其中泛型参数 `T` 的具体类型是 `String`,而 `E` 的具体类型是 `io::Error`。如果这个函数没有出任何错误成功返回,函数的调用者会收到一个包含 `String` 的 `Ok` 值————函数从文件中读取到的用户名。如果函数遇到任何错误,函数的调用者会收到一个 `Err` 值,它储存了一个包含更多这个问题相关信息的 `io::Error` 实例。这里选择 `io::Error` 作为函数的返回值是因为它正好是函数体中那两个可能会失败的操作的错误返回值:`File::open` 函数和 `read_to_string` 方法。
|
||||||
|
|
||||||
函数体以 `File::open` 函数开头。接着使用 `match` 处理返回值 `Result`,类似于示例 9-3 中的 `match`,唯一的区别是不再当 `Err` 时调用 `panic!`,而是提早返回并将 `File::open` 返回的错误值作为函数的错误返回值传递给调用者。如果 `File::open` 成功了,我们将文件句柄储存在变量 `f` 中并继续。
|
函数体以 `File::open` 函数开头。接着使用 `match` 处理返回值 `Result`,类似于示例 9-3 中的 `match`,唯一的区别是当 `Err` 时不再调用 `panic!`,而是提早返回并将 `File::open` 返回的错误值作为函数的错误返回值传递给调用者。如果 `File::open` 成功了,我们将文件句柄储存在变量 `f` 中并继续。
|
||||||
|
|
||||||
接着我们在变量 `s` 中创建了一个新 `String` 并调用文件句柄 `f` 的 `read_to_string` 方法来将文件的内容读取到 `s` 中。`read_to_string` 方法也返回一个 `Result` 因为它也可能会失败:哪怕是 `File::open` 已经成功了。所以我们需要另一个 `match` 来处理这个 `Result`:如果 `read_to_string` 成功了,那么这个函数就成功了,并返回文件中的用户名,它现在位于被封装进 `Ok` 的 `s` 中。如果`read_to_string` 失败了,则像之前处理 `File::open` 的返回值的 `match` 那样返回错误值。并不需要显式的调用 `return`,因为这是函数的最后一个表达式。
|
接着我们在变量 `s` 中创建了一个新 `String` 并调用文件句柄 `f` 的 `read_to_string` 方法来将文件的内容读取到 `s` 中。`read_to_string` 方法也返回一个 `Result` 因为它也可能会失败:哪怕是 `File::open` 已经成功了。所以我们需要另一个 `match` 来处理这个 `Result`:如果 `read_to_string` 成功了,那么这个函数就成功了,并返回文件中的用户名,它现在位于被封装进 `Ok` 的 `s` 中。如果`read_to_string` 失败了,则像之前处理 `File::open` 的返回值的 `match` 那样返回错误值。并不需要显式的调用 `return`,因为这是函数的最后一个表达式。
|
||||||
|
|
||||||
调用这个函数的代码最终会得到一个包含用户名的 `Ok` 值,或者一个包含 `io::Error` 的 `Err` 值。我们无从得知调用者会如何处理这些值。例如,如果他们得到了一个 `Err` 值,他们可能会选择 `panic!` 并使程序崩溃、使用一个默认的用户名或者从文件之外的地方寻找用户名。我们没有足够的信息知晓调用者具体会如何尝试,所以将所有的成功或失败信息向上传播,让他们选择合适处理方法。
|
调用这个函数的代码最终会得到一个包含用户名的 `Ok` 值,或者一个包含 `io::Error` 的 `Err` 值。我们无从得知调用者会如何处理这些值。例如,如果他们得到了一个 `Err` 值,他们可能会选择 `panic!` 并使程序崩溃、使用一个默认的用户名或者从文件之外的地方寻找用户名。我们没有足够的信息知晓调用者具体会如何尝试,所以将所有的成功或失败信息向上传播,让他们选择合适的处理方法。
|
||||||
|
|
||||||
这种传播错误的模式在 Rust 是如此的常见,以至于有一个更简便的专用语法:`?`。
|
这种传播错误的模式在 Rust 是如此的常见,以至于有一个更简便的专用语法:`?`。
|
||||||
|
|
||||||
@ -234,7 +234,7 @@ fn read_username_from_file() -> Result<String, io::Error> {
|
|||||||
|
|
||||||
`Result` 值之后的 `?` 被定义为与示例 9-5 中定义的处理 `Result` 值的 `match` 表达式有着完全相同的工作方式。如果 `Result` 的值是 `Ok`,这个表达式将会返回 `Ok` 中的值而程序将继续执行。如果值是 `Err`,`Err` 中的值将作为整个函数的返回值,就好像使用了 `return` 关键字一样,这样错误值就被传播给了调用者。
|
`Result` 值之后的 `?` 被定义为与示例 9-5 中定义的处理 `Result` 值的 `match` 表达式有着完全相同的工作方式。如果 `Result` 的值是 `Ok`,这个表达式将会返回 `Ok` 中的值而程序将继续执行。如果值是 `Err`,`Err` 中的值将作为整个函数的返回值,就好像使用了 `return` 关键字一样,这样错误值就被传播给了调用者。
|
||||||
|
|
||||||
在示例 9-6 的上下文中,`File::open` 调用结尾的 `?` 将会把 `Ok` 中的值返回给变量 `f`。如果出现了错误,`?` 会提早返回整个函数并将任何 `Err` 值传播给调用者。同理也适用于 `read_to_string` 调用结尾的 `?`。
|
在示例 9-6 的上下文中,`File::open` 调用结尾的 `?` 将会把 `Ok` 中的值返回给变量 `f`。如果出现了错误,`?` 会提早返回整个函数并将一些 `Err` 值传播给调用者。同理也适用于 `read_to_string` 调用结尾的 `?`。
|
||||||
|
|
||||||
`?` 消除了大量样板代码并使得函数的实现更简单。我们甚至可以在 `?` 之后直接使用链式方法调用来进一步缩短代码:
|
`?` 消除了大量样板代码并使得函数的实现更简单。我们甚至可以在 `?` 之后直接使用链式方法调用来进一步缩短代码:
|
||||||
|
|
||||||
|
@ -40,7 +40,7 @@ let home = "127.0.0.1".parse::<IpAddr>().unwrap();
|
|||||||
|
|
||||||
无论代码编写的多么好,当有害状态是预期会出现时,返回 `Result` 仍要比调用 `panic!` 更为合适。这样的例子包括解析器接收到错误数据,或者 HTTP 请求返回一个表明触发了限流的状态。在这些例子中,应该通过返回 `Result` 来表明失败预期是可能的,这样将有害状态向上传播,这样调用者就可以决定该如何处理这个问题。使用 `panic!` 来处理这些情况就不是最好的选择。
|
无论代码编写的多么好,当有害状态是预期会出现时,返回 `Result` 仍要比调用 `panic!` 更为合适。这样的例子包括解析器接收到错误数据,或者 HTTP 请求返回一个表明触发了限流的状态。在这些例子中,应该通过返回 `Result` 来表明失败预期是可能的,这样将有害状态向上传播,这样调用者就可以决定该如何处理这个问题。使用 `panic!` 来处理这些情况就不是最好的选择。
|
||||||
|
|
||||||
当代码对值进行操作时,应该首先验证值是有效的,并在其无效时 `panic!`。这主要是出于安全的原因:尝试操作无效数据会暴露代码漏洞,这就是标准库在尝试越界访问数组时会 `panic!` 的主要原因:尝试访问不属于当前数据结构的内存是一个常见的安全隐患。函数通常都遵循 **契约**(*contracts*):他们的行为只有在输入满足特定条件时才能得到保证。当违反契约时 panic 是有道理的,因为这这通常代表调用方的 bug,而且这也不是那种你希望调用方必须处理的错误。事实上也没有合理的方式来恢复调用方的代码:调用方的 **程序员** 需要修复他的代码。函数的契约,尤其是当违反它会造成 panic 的契约,应该在函数的 API 文档中得到解释。
|
当代码对值进行操作时,应该首先验证值是有效的,并在其无效时 `panic!`。这主要是出于安全的原因:尝试操作无效数据会暴露代码漏洞,这就是标准库在尝试越界访问数组时会 `panic!` 的主要原因:尝试访问不属于当前数据结构的内存是一个常见的安全隐患。函数通常都遵循 **契约**(*contracts*):他们的行为只有在输入满足特定条件时才能得到保证。当违反契约时 panic 是有道理的,因为这通常代表调用方的 bug,而且这也不是那种你希望调用方必须处理的错误。事实上也没有合理的方式来恢复调用方的代码:调用方的 **程序员** 需要修复他的代码。函数的契约,尤其是当违反它会造成 panic 的契约,应该在函数的 API 文档中得到解释。
|
||||||
|
|
||||||
虽然在所有函数中都拥有许多错误检查是冗长而烦人的。幸运的是,可以利用 Rust 的类型系统(以及编译器的类型检查)为你进行很多检查。如果函数有一个特定类型的参数,可以在知晓编译器已经确保其拥有一个有效值的前提下进行你的代码逻辑。例如,如果你使用了一个不同于 `Option` 的类型,而且程序期望它是 **有值** 的并且不是 **空值**。你的代码无需处理 `Some` 和 `None` 这两种情况,它只会有一种情况就是绝对会有一个值。尝试向函数传递空值的代码甚至根本不能编译,所以你的函数在运行时没有必要判空。另外一个例子是使用像 `u32` 这样的无符号整型,也会确保它永远不为负。
|
虽然在所有函数中都拥有许多错误检查是冗长而烦人的。幸运的是,可以利用 Rust 的类型系统(以及编译器的类型检查)为你进行很多检查。如果函数有一个特定类型的参数,可以在知晓编译器已经确保其拥有一个有效值的前提下进行你的代码逻辑。例如,如果你使用了一个不同于 `Option` 的类型,而且程序期望它是 **有值** 的并且不是 **空值**。你的代码无需处理 `Some` 和 `None` 这两种情况,它只会有一种情况就是绝对会有一个值。尝试向函数传递空值的代码甚至根本不能编译,所以你的函数在运行时没有必要判空。另外一个例子是使用像 `u32` 这样的无符号整型,也会确保它永远不为负。
|
||||||
|
|
||||||
|
@ -6,7 +6,7 @@
|
|||||||
|
|
||||||
每一个编程语言都有高效的处理重复概念的工具;在 Rust 中工具之一就是 **泛型**(*generics*)。泛型是具体类型或其他属性的抽象替代。我们可以表达泛型的属性,比如他们的行为或如何与其他泛型相关联,而不需要在编写和编译代码时知道他们在这里实际上代表什么。
|
每一个编程语言都有高效的处理重复概念的工具;在 Rust 中工具之一就是 **泛型**(*generics*)。泛型是具体类型或其他属性的抽象替代。我们可以表达泛型的属性,比如他们的行为或如何与其他泛型相关联,而不需要在编写和编译代码时知道他们在这里实际上代表什么。
|
||||||
|
|
||||||
同理为了编写一份可以用于多种具体值的代码,函数并不知道其参数为何值,这时就可以让函数获取泛型而不是像 `i32` 或 `String` 这样的具体值。我们已经使用过第六章的 `Option<T>`,第八章的 `Vec<T>` 和 `HashMap<K, V>`,以及第九章的 `Result<T, E>` 这些泛型了。本章会探索如何使用泛型定义我们自己自己的类型、函数和方法!
|
同理为了编写一份可以用于多种具体值的代码,函数并不知道其参数为何值,这时就可以让函数获取泛型而不是像 `i32` 或 `String` 这样的具体值。我们已经使用过第六章的 `Option<T>`,第八章的 `Vec<T>` 和 `HashMap<K, V>`,以及第九章的 `Result<T, E>` 这些泛型了。本章会探索如何使用泛型定义我们自己的类型、函数和方法!
|
||||||
|
|
||||||
首先,我们将回顾一下提取函数以减少代码重复的机制。接着使用一个只在参数类型上不同的泛型函数来实现相同的功能。我们也会讲到结构体和枚举定义中的泛型。
|
首先,我们将回顾一下提取函数以减少代码重复的机制。接着使用一个只在参数类型上不同的泛型函数来实现相同的功能。我们也会讲到结构体和枚举定义中的泛型。
|
||||||
|
|
||||||
|
@ -253,7 +253,7 @@ fn main() {
|
|||||||
|
|
||||||
<span class="caption">示例 10-9:在 `Point<T>` 结构体上实现方法 `x`,它返回 `T` 类型的字段 `x` 的引用</span>
|
<span class="caption">示例 10-9:在 `Point<T>` 结构体上实现方法 `x`,它返回 `T` 类型的字段 `x` 的引用</span>
|
||||||
|
|
||||||
注意必须在 `impl` 后面声明 `T`,这样就可以在 `Point<T>` 上实现的方法中使用它了。在 `impl` 之后声明泛型 `T` ,这样 Rust 就知道 `Point` 的加括号中的类型是泛型而不是具体类型。例如,可以选择为 `Point<f32>` 实例实现方法,而不是为泛型 `Point` 实例。示例 10-10 展示了一个没有在 `impl` 之后(的尖括号)声明泛型的例子,这里使用了一个具体类型,`f32`:
|
注意必须在 `impl` 后面声明 `T`,这样就可以在 `Point<T>` 上实现的方法中使用它了。在 `impl` 之后声明泛型 `T` ,这样 Rust 就知道 `Point` 的尖括号中的类型是泛型而不是具体类型。例如,可以选择为 `Point<f32>` 实例实现方法,而不是为泛型 `Point` 实例。示例 10-10 展示了一个没有在 `impl` 之后(的尖括号)声明泛型的例子,这里使用了一个具体类型,`f32`:
|
||||||
|
|
||||||
```rust
|
```rust
|
||||||
# struct Point<T> {
|
# struct Point<T> {
|
||||||
|
Loading…
Reference in New Issue
Block a user