## trait:定义共享的行为 > [ch10-02-traits.md](https://github.com/rust-lang/book/blob/master/second-edition/src/ch10-02-traits.md) >
> commit e5a987f5da3fba24e55f5c7102ec63f9dc3bc360 trait 允许我们进行另一种抽象:他们让我们可以抽象类型所通用的行为。*trait* 告诉 Rust 编译器某个特定类型拥有可能与其他类型共享的功能。在使用泛型类型参数的场景中,可以使用 *trait bounds* 在编译时指定泛型可以是任何实现了某个 trait 的类型,并由此在这个场景下拥有我们希望的功能。 > 注意:*trait* 类似于其他语言中的常被称为**接口**(*interfaces*)的功能,虽然有一些不同。 ### 定义 trait 一个类型的行为由其可供调用的方法构成。如果可以对不同类型调用相同的方法的话,这些类型就可以共享相同的行为了。trait 定义是一种将方法签名组合起来的方法,目的是定义一个实现某些目的所必需的行为的集合。 例如,这里有多个存放了不同类型和属性文本的结构体:结构体`NewsArticle`用于存放发生于世界各地的新闻故事,而结构体`Tweet`最多只能存放 140 个字符的内容,以及像是否转推或是否是对推友的回复这样的元数据。 我们想要创建一个多媒体聚合库用来显示可能储存在`NewsArticle`或`Tweet`实例中的数据的总结。每一个结构体都需要的行为是他们是能够被总结的,这样的话就可以调用实例的`summary`方法来请求总结。列表 10-11 中展示了一个表现这个概念的`Summarizable` trait 的定义: Filename: lib.rs ```rust pub trait Summarizable { fn summary(&self) -> String; } ``` Listing 10-11: Definition of a `Summarizable` trait that consists of the behavior provided by a `summary` method 使用`trait`关键字来定义一个 trait,后面是 trait 的名字,在这个例子中是`Summarizable`。在大括号中声明描述实现这个 trait 的类型所需要的行为的方法签名,在这个例子中是是`fn summary(&self) -> String`。在方法签名后跟分号而不是在大括号中提供其实现。接着每一个实现这个 trait 的类型都需要提供其自定义行为的方法体,编译器也会确保任何实现`Summarizable` trait 的类型都拥有与这个签名的定义完全一致的`summary`方法。 trait 体中可以有多个方法,一行一个方法签名且都以分号结尾。 ### 为类型实现 trait 现在我们定义了`Summarizable` trait,接着就可以在多媒体聚合库中需要拥有这个行为的类型上实现它了。列表 10-12 中展示了`NewsArticle`结构体上`Summarizable` trait 的一个实现,它使用标题、作者和创建的位置作为`summary`的返回值。对于`Tweet`结构体,我们选择将`summary`定义为用户名后跟推文的全部文本作为返回值,并假设推文内容已经被限制为 140 字符以内。 Filename: lib.rs ```rust # pub trait Summarizable { # fn summary(&self) -> String; # } # pub struct NewsArticle { pub headline: String, pub location: String, pub author: String, pub content: String, } impl Summarizable for NewsArticle { fn summary(&self) -> String { format!("{}, by {} ({})", self.headline, self.author, self.location) } } pub struct Tweet { pub username: String, pub content: String, pub reply: bool, pub retweet: bool, } impl Summarizable for Tweet { fn summary(&self) -> String { format!("{}: {}", self.username, self.content) } } ``` Listing 10-12: Implementing the `Summarizable` trait on the `NewsArticle` and `Tweet` types 在类型上实现 trait 类似与实现与 trait 无关的方法。区别在于`impl`关键字之后,我们提供需要实现 trait 的名称,接着是`for`和需要实现 trait 的类型的名称。在`impl`块中,使用 trait 定义中的方法签名,不过不再后跟分号,而是需要在大括号中编写函数体来为特定类型实现 trait 方法所拥有的行为。 一旦实现了 trait,我们就可以用与`NewsArticle`和`Tweet`实例的非 trait 方法一样的方式调用 trait 方法了: ```rust,ignore let tweet = Tweet { username: String::from("horse_ebooks"), content: String::from("of course, as you probably already know, people"), reply: false, retweet: false, }; println!("1 new tweet: {}", tweet.summary()); ``` 这会打印出`1 new tweet: horse_ebooks: of course, as you probably already know, people`。 注意因为列表 10-12 中我们在相同的`lib.rs`里定义了`Summarizable` trait 和`NewsArticle`与`Tweet`类型,所以他们是位于同一作用域的。如果这个`lib.rs`是对应`aggregator` crate 的,而别人想要利用我们 crate 的功能外加为其`WeatherForecast`结构体实现`Summarizable` trait,在实现`Summarizable` trait 之前他们首先就需要将其导入其作用域中,如列表 10-13 所示: Filename: lib.rs ```rust,ignore extern crate aggregator; use aggregator::Summarizable; struct WeatherForecast { high_temp: f64, low_temp: f64, chance_of_precipitation: f64, } impl Summarizable for WeatherForecast { fn summary(&self) -> String { format!("The high will be {}, and the low will be {}. The chance of precipitation is {}%.", self.high_temp, self.low_temp, self.chance_of_precipitation) } } ``` Listing 10-13: Bringing the `Summarizable` trait from our `aggregator` crate into scope in another crate 另外这段代码假设`Summarizable`是一个公有 trait,这是因为列表 10-11 中`trait`之前使用了`pub`关键字。 trait 实现的一个需要注意的限制是:只能在 trait 或对应类型位于我们 crate 本地的时候为其实现 trait。换句话说,不允许对外部类型实现外部 trait。例如,不能`Vec`上实现`Display` trait,因为`Display`和`Vec`都定义于标准库中。允许在像`Tweet`这样作为我们`aggregator`crate 部分功能的自定义类型上实现标准库中的 trait `Display`。也允许在`aggregator`crate中为`Vec`实现`Summarizable`,因为`Summarizable`定义与此。这个限制是我们称为 *orphan rule* 的一部分,如果你感兴趣的可以在类型理论中找到它。简单来说,它被称为 orphan rule 是因为其父类型不存在。没有这条规则的话,两个 crate 可以分别对相同类型是实现相同的 trait,因而这两个实现会相互冲突:Rust 将无从得知应该使用哪一个。因为 Rust 强制执行 orphan rule,其他人编写的代码不会破坏你代码,反之亦是如此。 ### 默认实现 有时为 trait 中的某些或全部提供默认的行为,而不是在每个类型的每个实现中都定义自己的行为是很有用的。这样当为某个特定类型实现 trait 时,可以选择保留或重载每个方法的默认行为。 列表 10-14 中展示了如何为`Summarize` trait 的`summary`方法指定一个默认的字符串值,而不是像列表 10-11 中那样只是定义方法签名: Filename: lib.rs ```rust pub trait Summarizable { fn summary(&self) -> String { String::from("(Read more...)") } } ``` Listing 10-14: Definition of a `Summarizable` trait with a default implementation of the `summary` method 如果想要对`NewsArticle`实例使用这个默认实现,而不是像列表 10-12 中那样定义一个自己的实现,则可以指定一个空的`impl`块: ```rust,ignore impl Summarizable for NewsArticle {} ``` 即便选择不再直接为`NewsArticle`定义`summary`方法了,因为`summary`方法有一个默认实现而且`NewsArticle`被指定为实现了`Summarizable` trait,我们仍然可以对`NewsArticle`的实例调用`summary`方法: ```rust,ignore let article = NewsArticle { headline: String::from("Penguins win the Stanley Cup Championship!"), location: String::from("Pittsburgh, PA, USA"), author: String::from("Iceburgh"), content: String::from("The Pittsburgh Penguins once again are the best hockey team in the NHL."), }; println!("New article available! {}", article.summary()); ``` 这段代码会打印`New article available! (Read more...)`。 将`Summarizable` trait 改变为拥有默认`summary`实现并不要求对列表 10-12 中的`Tweet`和列表 10-13 中的`WeatherForecast`对`Summarizable`的实现做任何改变:重载一个默认实现的语法与实现没有默认实现的 trait 方法时完全一样的。 默认实现允许调用相同 trait 中的其他方法,哪怕这些方法没有默认实现。通过这种方法,trait 可以实现很多有用的功能而只需实现一小部分特定内容。我们可以选择让`Summarizable` trait 也拥有一个要求实现的`author_summary`方法,接着`summary`方法则提供默认实现并调用`author_summary`方法: ```rust pub trait Summarizable { fn author_summary(&self) -> String; fn summary(&self) -> String { format!("(Read more from {}...)", self.author_summary()) } } ``` 为了使用这个版本的`Summarizable`,只需在实现 trait 时定义`author_summary`即可: ```rust,ignore impl Summarizable for Tweet { fn author_summary(&self) -> String { format!("@{}", self.username) } } ``` 一旦定义了`author_summary`,我们就可以对`Tweet`结构体的实例调用`summary`了,而`summary`的默认实现会调用我们提供的`author_summary`定义。 ```rust,ignore let tweet = Tweet { username: String::from("horse_ebooks"), content: String::from("of course, as you probably already know, people"), reply: false, retweet: false, }; println!("1 new tweet: {}", tweet.summary()); ``` 这会打印出`1 new tweet: (Read more from @horse_ebooks...)`。 注意在重载过的实现中调用默认实现是不可能的。 ### trait bounds 现在我们定义了 trait 并在类型上实现了这些 trait,也可以对泛型类型参数使用 trait。我们可以限制泛型不再适用于任何类型,编译器会确保其被限制为那些实现了特定 trait 的类型,由此泛型就会拥有我们希望其类型所拥有的功能。这被称为指定泛型的 *trait bounds*。 例如在列表 10-12 中为`NewsArticle`和`Tweet`类型实现了`Summarizable` trait。我们可以定义一个函数`notify`来调用`summary`方法,它拥有一个泛型类型`T`的参数`item`。为了能够在`item`上调用`summary`而不出现错误,我们可以在`T`上使用 trait bounds 来指定`item`必须是实现了`Summarizable` trait 的类型: ```rust,ignore pub fn notify(item: T) { println!("Breaking news! {}", item.summary()); } ``` trait bounds 连同泛型类型参数声明一同出现,位于尖括号中的冒号后面。由于`T`上的 trait bounds,我们可以传递任何`NewsArticle`或`Tweet`的实例来调用`notify`函数。列表 10-13 中使用我们`aggregator` crate 的外部代码也可以传递一个`WeatherForecast`的实例来调用`notify`函数,因为`WeatherForecast`同样也实现了`Summarizable`。使用任何其他类型,比如`String`或`i32`,来调用`notify`的代码将不能编译,因为这些类型没有实现`Summarizable`。 可以通过`+`来为泛型指定多个 trait bounds。如果我们需要能够在函数中使用`T`类型的显示格式的同时也能使用`summary`方法,则可以使用 trait bounds `T: Summarizable + Display`。这意味着`T`可以是任何实现了`Summarizable`和`Display`的类型。 对于拥有多个泛型类型参数的函数,每一个泛型都可以有其自己的 trait bounds。在函数名和参数列表之间的尖括号中指定很多的 trait bound 信息将是难以阅读的,所以有另外一个指定 trait bounds 的语法,它将其移动到函数签名后的`where`从句中。所以相比这样写: ```rust,ignore fn some_function(t: T, u: U) -> i32 { ``` 我们也可以使用`where`从句: ```rust,ignore fn some_function(t: T, u: U) -> i32 where T: Display + Clone, U: Clone + Debug { ``` 这就显得不那么杂乱,同时也使这个函数看起来更像没有很多 trait bounds 的函数。这时函数名、参数列表和返回值类型都离得很近。 ### 使用 trait bounds 来修复`largest`函数 所以任何想要对泛型使用 trait 定义的行为的时候,都需要在泛型参数类型上指定 trait bounds。现在我们就可以修复列表 10-5 中那个使用泛型类型参数的`largest`函数定义了!当我们将其放置不管的时候,它会出现这个错误: ``` error[E0369]: binary operation `>` cannot be applied to type `T` | 5 | if item > largest { | ^^^^ | note: an implementation of `std::cmp::PartialOrd` might be missing for `T` ``` 在`largest`函数体中我们想要使用大于运算符比较两个`T`类型的值。这个运算符被定义为标准库中 trait `std::cmp::PartialOrd` 的一个默认方法。所以为了能够使用大于运算符,需要在`T`的 trait bounds 中指定`PartialOrd`,这样`largest`函数可以用于任何可以比较大小的类型的 slice。因为`PartialOrd`位于 prelude 中所以并不需要手动将其引入作用域。 ```rust,ignore fn largest(list: &[T]) -> T { ``` 但是如果编译代码的话,会出现不同的错误: ```text error[E0508]: cannot move out of type `[T]`, a non-copy array --> src/main.rs:4:23 | 4 | let mut largest = list[0]; | ----------- ^^^^^^^ cannot move out of here | | | hint: to prevent move, use `ref largest` or `ref mut largest` error[E0507]: cannot move out of borrowed content --> src/main.rs:6:9 | 6 | for &item in list.iter() { | ^---- | || | |hint: to prevent move, use `ref item` or `ref mut item` | cannot move out of borrowed content ``` 错误的核心是`cannot move out of type [T], a non-copy array`,对于非泛型版本的`largest`函数,我们只尝试了寻找最大的`i32`和`char`。正如第四章讨论过的,像`i32`和`char`这样的类型是已知大小的并可以储存在栈上,所以他们实现了`Copy` trait。当我们将`largest`函数改成使用泛型后,现在`list`参数的类型就有可能是没有实现`Copy` trait 的,这意味着我们可能不能将`list[0]`的值移动到`largest`变量中。 如果只想对实现了`Copy`的类型调用这些代码,可以在`T`的 trait bounds 中增加`Copy`!列表 10-15 中展示了一个可以编译的泛型版本的`largest`函数的完整代码,只要传递给`largest`的 slice 值的类型实现了`PartialOrd`和`Copy`这两个 trait,例如`i32`和`char`: Filename: src/main.rs ```rust use std::cmp::PartialOrd; fn largest(list: &[T]) -> T { let mut largest = list[0]; for &item in list.iter() { if item > largest { largest = item; } } largest } fn main() { let numbers = vec![34, 50, 25, 100, 65]; let result = largest(&numbers); println!("The largest number is {}", result); let chars = vec!['y', 'm', 'a', 'q']; let result = largest(&chars); println!("The largest char is {}", result); } ``` Listing 10-15: A working definition of the `largest` function that works on any generic type that implements the `PartialOrd` and `Copy` traits 如果并不希望限制`largest`函数只能用于实现了`Copy` trait 的类型,我们可以在`T`的 trait bounds 中指定`Clone`而不是`Copy`,并克隆 slice 的每一个值使得`largest`函数拥有其所有权。但是使用`clone`函数潜在意味着更多的堆分配,而且堆分配在涉及大量数据时可能会相当缓慢。另一种`largest`的实现方式是返回 slice 中一个`T`值的引用。如果我们将函数返回值从`T`改为`&T`并改变函数体使其能够返回一个引用,我们将不需要任何`Clone`或`Copy`的 trait bounds 而且也不会有任何的堆分配。尝试自己实现这种替代解决方式吧! trait 和 trait bounds 让我们使用泛型类型参数来减少重复,并仍然能够向编译器明确指定泛型类型需要拥有哪些行为。因为我们向编译器提供了 trait bounds 信息,它就可以检查代码中所用到的具体类型是否提供了正确的行为。在动态类型语言中,如果我们尝试调用一个类型并没有实现的方法,会在运行时出现错误。Rust 将这些错误移动到了编译时,甚至在代码能够运行之前就强迫我们修复错误。另外,我们也无需编写运行时检查行为的代码,因为在编译时就已经检查过了,这样相比其他那些不愿放弃泛型灵活性的语言有更好的性能。 这里还有一种泛型,我们一直在使用它甚至都没有察觉它的存在,这就是**生命周期**(*lifetimes*)。不同于其他泛型帮助我们确保类型拥有期望的行为,生命周期则有助于确保引用在我们需要他们的时候一直有效。让我们学习生命周期是如何做到这些的。