<!DOCTYPE HTML> <html lang="en" class="light sidebar-visible" dir="ltr"> <head> <!-- Book generated using mdBook --> <meta charset="UTF-8"> <title>方法语法 - Rust 程序设计语言 简体中文版</title> <!-- Custom HTML head --> <meta name="description" content=""> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="theme-color" content="#ffffff"> <link rel="icon" href="favicon.svg"> <link rel="shortcut icon" href="favicon.png"> <link rel="stylesheet" href="css/variables.css"> <link rel="stylesheet" href="css/general.css"> <link rel="stylesheet" href="css/chrome.css"> <link rel="stylesheet" href="css/print.css" media="print"> <!-- Fonts --> <link rel="stylesheet" href="FontAwesome/css/font-awesome.css"> <link rel="stylesheet" href="fonts/fonts.css"> <!-- Highlight.js Stylesheets --> <link rel="stylesheet" id="highlight-css" href="highlight.css"> <link rel="stylesheet" id="tomorrow-night-css" href="tomorrow-night.css"> <link rel="stylesheet" id="ayu-highlight-css" href="ayu-highlight.css"> <!-- Custom theme stylesheets --> <link rel="stylesheet" href="ferris.css"> <link rel="stylesheet" href="theme/2018-edition.css"> <link rel="stylesheet" href="theme/semantic-notes.css"> <link rel="stylesheet" href="theme/listing.css"> <!-- Provide site root to javascript --> <script> var path_to_root = ""; var default_theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "navy" : "light"; </script> <!-- Start loading toc.js asap --> <script src="toc.js"></script> </head> <body> <div id="body-container"> <!-- Work around some values being stored in localStorage wrapped in quotes --> <script> try { var theme = localStorage.getItem('mdbook-theme'); var sidebar = localStorage.getItem('mdbook-sidebar'); if (theme.startsWith('"') && theme.endsWith('"')) { localStorage.setItem('mdbook-theme', theme.slice(1, theme.length - 1)); } if (sidebar.startsWith('"') && sidebar.endsWith('"')) { localStorage.setItem('mdbook-sidebar', sidebar.slice(1, sidebar.length - 1)); } } catch (e) { } </script> <!-- Set the theme before any content is loaded, prevents flash --> <script> var theme; try { theme = localStorage.getItem('mdbook-theme'); } catch(e) { } if (theme === null || theme === undefined) { theme = default_theme; } const html = document.documentElement; html.classList.remove('light') html.classList.add(theme); html.classList.add("js"); </script> <input type="checkbox" id="sidebar-toggle-anchor" class="hidden"> <!-- Hide / unhide sidebar before it is displayed --> <script> var sidebar = null; var sidebar_toggle = document.getElementById("sidebar-toggle-anchor"); if (document.body.clientWidth >= 1080) { try { sidebar = localStorage.getItem('mdbook-sidebar'); } catch(e) { } sidebar = sidebar || 'visible'; } else { sidebar = 'hidden'; } sidebar_toggle.checked = sidebar === 'visible'; html.classList.remove('sidebar-visible'); html.classList.add("sidebar-" + sidebar); </script> <nav id="sidebar" class="sidebar" aria-label="Table of contents"> <!-- populated by js --> <mdbook-sidebar-scrollbox class="sidebar-scrollbox"></mdbook-sidebar-scrollbox> <noscript> <iframe class="sidebar-iframe-outer" src="toc.html"></iframe> </noscript> <div id="sidebar-resize-handle" class="sidebar-resize-handle"> <div class="sidebar-resize-indicator"></div> </div> </nav> <div id="page-wrapper" class="page-wrapper"> <div class="page"> <div id="menu-bar-hover-placeholder"></div> <div id="menu-bar" class="menu-bar sticky"> <div class="left-buttons"> <label id="sidebar-toggle" class="icon-button" for="sidebar-toggle-anchor" title="Toggle Table of Contents" aria-label="Toggle Table of Contents" aria-controls="sidebar"> <i class="fa fa-bars"></i> </label> <button id="theme-toggle" class="icon-button" type="button" title="Change theme" aria-label="Change theme" aria-haspopup="true" aria-expanded="false" aria-controls="theme-list"> <i class="fa fa-paint-brush"></i> </button> <ul id="theme-list" class="theme-popup" aria-label="Themes" role="menu"> <li role="none"><button role="menuitem" class="theme" id="light">Light</button></li> <li role="none"><button role="menuitem" class="theme" id="rust">Rust</button></li> <li role="none"><button role="menuitem" class="theme" id="coal">Coal</button></li> <li role="none"><button role="menuitem" class="theme" id="navy">Navy</button></li> <li role="none"><button role="menuitem" class="theme" id="ayu">Ayu</button></li> </ul> <button id="search-toggle" class="icon-button" type="button" title="Search. (Shortkey: s)" aria-label="Toggle Searchbar" aria-expanded="false" aria-keyshortcuts="S" aria-controls="searchbar"> <i class="fa fa-search"></i> </button> </div> <h1 class="menu-title">Rust 程序设计语言 简体中文版</h1> <div class="right-buttons"> <a href="print.html" title="Print this book" aria-label="Print this book"> <i id="print-button" class="fa fa-print"></i> </a> <a href="https://github.com/KaiserY/trpl-zh-cn/tree/main" title="Git repository" aria-label="Git repository"> <i id="git-repository-button" class="fa fa-github"></i> </a> <a href="https://github.com/KaiserY/trpl-zh-cn/edit/main/src/ch05-03-method-syntax.md" title="Suggest an edit" aria-label="Suggest an edit"> <i id="git-edit-button" class="fa fa-edit"></i> </a> </div> </div> <div id="search-wrapper" class="hidden"> <form id="searchbar-outer" class="searchbar-outer"> <input type="search" id="searchbar" name="searchbar" placeholder="Search this book ..." aria-controls="searchresults-outer" aria-describedby="searchresults-header"> </form> <div id="searchresults-outer" class="searchresults-outer hidden"> <div id="searchresults-header" class="searchresults-header"></div> <ul id="searchresults"> </ul> </div> </div> <!-- Apply ARIA attributes after the sidebar and the sidebar toggle button are added to the DOM --> <script> document.getElementById('sidebar-toggle').setAttribute('aria-expanded', sidebar === 'visible'); document.getElementById('sidebar').setAttribute('aria-hidden', sidebar !== 'visible'); Array.from(document.querySelectorAll('#sidebar a')).forEach(function(link) { link.setAttribute('tabIndex', sidebar === 'visible' ? 0 : -1); }); </script> <div id="content" class="content"> <main> <h2 id="方法语法"><a class="header" href="#方法语法">方法语法</a></h2> <blockquote> <p><a href="https://github.com/rust-lang/book/blob/main/src/ch05-03-method-syntax.md">ch05-03-method-syntax.md</a> <br> commit d339373a838fd312a8a9bcc9487e1ffbc9e1582f</p> </blockquote> <p><strong>方法</strong>(method)与函数类似:它们使用 <code>fn</code> 关键字和名称声明,可以拥有参数和返回值,同时包含在某处调用该方法时会执行的代码。不过方法与函数是不同的,因为它们在结构体的上下文中被定义(或者是枚举或 trait 对象的上下文,将分别在<a href="ch06-00-enums.html">第六章</a>和<a href="ch18-02-trait-objects.html">第十八章</a>讲解),并且它们第一个参数总是 <code>self</code>,它代表调用该方法的结构体实例。</p> <h3 id="定义方法"><a class="header" href="#定义方法">定义方法</a></h3> <p>让我们把前面实现的获取一个 <code>Rectangle</code> 实例作为参数的 <code>area</code> 函数,改写成一个定义于 <code>Rectangle</code> 结构体上的 <code>area</code> 方法,如示例 5-13 所示:</p> <p><span class="filename">文件名:src/main.rs</span></p> <pre><pre class="playground"><code class="language-rust edition2021">#[derive(Debug)] struct Rectangle { width: u32, height: u32, } impl Rectangle { fn area(&self) -> u32 { self.width * self.height } } fn main() { let rect1 = Rectangle { width: 30, height: 50, }; println!( "The area of the rectangle is {} square pixels.", rect1.area() ); }</code></pre></pre> <p><span class="caption">示例 5-13:在 <code>Rectangle</code> 结构体上定义 <code>area</code> 方法</span></p> <p>为了使函数定义于 <code>Rectangle</code> 的上下文中,我们开始了一个 <code>impl</code> 块(<code>impl</code> 是 <em>implementation</em> 的缩写),这个 <code>impl</code> 块中的所有内容都将与 <code>Rectangle</code> 类型相关联。接着将 <code>area</code> 函数移动到 <code>impl</code> 大括号中,并将签名中的第一个(在这里也是唯一一个)参数和函数体中其他地方的对应参数改成 <code>self</code>。然后在 <code>main</code> 中将我们先前调用 <code>area</code> 方法并传递 <code>rect1</code> 作为参数的地方,改成使用 <strong>方法语法</strong>(<em>method syntax</em>)在 <code>Rectangle</code> 实例上调用 <code>area</code> 方法。方法语法获取一个实例并加上一个点号,后跟方法名、圆括号以及任何参数。</p> <p>在 <code>area</code> 的签名中,使用 <code>&self</code> 来替代 <code>rectangle: &Rectangle</code>,<code>&self</code> 实际上是 <code>self: &Self</code> 的缩写。在一个 <code>impl</code> 块中,<code>Self</code> 类型是 <code>impl</code> 块的类型的别名。方法的第一个参数必须有一个名为 <code>self</code> 的<code>Self</code> 类型的参数,所以 Rust 让你在第一个参数位置上只用 <code>self</code> 这个名字来简化。注意,我们仍然需要在 <code>self</code> 前面使用 <code>&</code> 来表示这个方法借用了 <code>Self</code> 实例,就像我们在 <code>rectangle: &Rectangle</code> 中做的那样。方法可以选择获得 <code>self</code> 的所有权,或者像我们这里一样不可变地借用 <code>self</code>,或者可变地借用 <code>self</code>,就跟其他参数一样。</p> <p>这里选择 <code>&self</code> 的理由跟在函数版本中使用 <code>&Rectangle</code> 是相同的:我们并不想获取所有权,只希望能够读取结构体中的数据,而不是写入。如果想要在方法中改变调用方法的实例,需要将第一个参数改为 <code>&mut self</code>。通过仅仅使用 <code>self</code> 作为第一个参数来使方法获取实例的所有权是很少见的;这种技术通常用在当方法将 <code>self</code> 转换成别的实例的时候,这时我们想要防止调用者在转换之后使用原始的实例。</p> <p>使用方法替代函数,除了可使用方法语法和不需要在每个函数签名中重复 <code>self</code> 的类型之外,其主要好处在于组织性。我们将某个类型实例能做的所有事情都一起放入 <code>impl</code> 块中,而不是让将来的用户在我们的库中到处寻找 <code>Rectangle</code> 的功能。</p> <p>请注意,我们可以选择将方法的名称与结构中的一个字段相同。例如,我们可以在 <code>Rectangle</code> 上定义一个方法,并命名为 <code>width</code>:</p> <p><span class="filename">文件名:src/main.rs</span></p> <pre><pre class="playground"><code class="language-rust edition2021"><span class="boring">#[derive(Debug)] </span><span class="boring">struct Rectangle { </span><span class="boring"> width: u32, </span><span class="boring"> height: u32, </span><span class="boring">} </span><span class="boring"> </span>impl Rectangle { fn width(&self) -> bool { self.width > 0 } } fn main() { let rect1 = Rectangle { width: 30, height: 50, }; if rect1.width() { println!("The rectangle has a nonzero width; it is {}", rect1.width); } }</code></pre></pre> <p>在这里,我们选择让 <code>width</code> 方法在实例的 <code>width</code> 字段的值大于 <code>0</code> 时返回 <code>true</code>,等于 <code>0</code> 时则返回 <code>false</code>:我们可以出于任何目的,在同名的方法中使用同名的字段。在 <code>main</code> 中,当我们在 <code>rect1.width</code> 后面加上括号时。Rust 知道我们指的是方法 <code>width</code>。当我们不使用圆括号时,Rust 知道我们指的是字段 <code>width</code>。</p> <p>通常,但并不总是如此,与字段同名的方法将被定义为只返回字段中的值,而不做其他事情。这样的方法被称为 <em>getters</em>,Rust 并不像其他一些语言那样为结构字段自动实现它们。Getters 很有用,因为你可以把字段变成私有的,但方法是公共的,这样就可以把对字段的只读访问作为该类型公共 API 的一部分。我们将在<a href="ch07-03-paths-for-referring-to-an-item-in-the-module-tree.html#%E4%BD%BF%E7%94%A8-pub-%E5%85%B3%E9%94%AE%E5%AD%97%E6%9A%B4%E9%9C%B2%E8%B7%AF%E5%BE%84">第七章</a>中讨论什么是公有和私有,以及如何将一个字段或方法指定为公有或私有。</p> <blockquote> <h3 id="--运算符到哪去了"><a class="header" href="#--运算符到哪去了"><code>-></code> 运算符到哪去了?</a></h3> <p>在 C/C++ 语言中,有两个不同的运算符来调用方法:<code>.</code> 直接在对象上调用方法,而 <code>-></code> 在一个对象的指针上调用方法,这时需要先解引用(dereference)指针。换句话说,如果 <code>object</code> 是一个指针,那么 <code>object->something()</code> 就像 <code>(*object).something()</code> 一样。</p> <p>Rust 并没有一个与 <code>-></code> 等效的运算符;相反,Rust 有一个叫 <strong>自动引用和解引用</strong>(<em>automatic referencing and dereferencing</em>)的功能。方法调用是 Rust 中少数几个拥有这种行为的地方。</p> <p>它是这样工作的:当使用 <code>object.something()</code> 调用方法时,Rust 会自动为 <code>object</code> 添加 <code>&</code>、<code>&mut</code> 或 <code>*</code> 以便使 <code>object</code> 与方法签名匹配。也就是说,这些代码是等价的:</p> <pre><pre class="playground"><code class="language-rust edition2021"><span class="boring">#![allow(unused)] </span><span class="boring">fn main() { </span><span class="boring">#[derive(Debug,Copy,Clone)] </span><span class="boring">struct Point { </span><span class="boring"> x: f64, </span><span class="boring"> y: f64, </span><span class="boring">} </span><span class="boring"> </span><span class="boring">impl Point { </span><span class="boring"> fn distance(&self, other: &Point) -> f64 { </span><span class="boring"> let x_squared = f64::powi(other.x - self.x, 2); </span><span class="boring"> let y_squared = f64::powi(other.y - self.y, 2); </span><span class="boring"> </span><span class="boring"> f64::sqrt(x_squared + y_squared) </span><span class="boring"> } </span><span class="boring">} </span><span class="boring">let p1 = Point { x: 0.0, y: 0.0 }; </span><span class="boring">let p2 = Point { x: 5.0, y: 6.5 }; </span>p1.distance(&p2); (&p1).distance(&p2); <span class="boring">}</span></code></pre></pre> <p>第一行看起来简洁的多。这种自动引用的行为之所以有效,是因为方法有一个明确的接收者———— <code>self</code> 的类型。在给出接收者和方法名的前提下,Rust 可以明确地计算出方法是仅仅读取(<code>&self</code>),做出修改(<code>&mut self</code>)或者是获取所有权(<code>self</code>)。事实上,Rust 对方法接收者的隐式借用让所有权在实践中更友好。</p> </blockquote> <h3 id="带有更多参数的方法"><a class="header" href="#带有更多参数的方法">带有更多参数的方法</a></h3> <p>让我们通过实现 <code>Rectangle</code> 结构体上的另一方法来练习使用方法。这回,我们让一个 <code>Rectangle</code> 的实例获取另一个 <code>Rectangle</code> 实例,如果 <code>self</code> (第一个 <code>Rectangle</code>)能完全包含第二个长方形则返回 <code>true</code>;否则返回 <code>false</code>。一旦我们定义了 <code>can_hold</code> 方法,就可以编写示例 5-14 中的代码。</p> <p><span class="filename">文件名:src/main.rs</span></p> <pre><code class="language-rust ignore">fn main() { let rect1 = Rectangle { width: 30, height: 50, }; let rect2 = Rectangle { width: 10, height: 40, }; let rect3 = Rectangle { width: 60, height: 45, }; println!("Can rect1 hold rect2? {}", rect1.can_hold(&rect2)); println!("Can rect1 hold rect3? {}", rect1.can_hold(&rect3)); }</code></pre> <p><span class="caption">示例 5-14:使用还未实现的 <code>can_hold</code> 方法</span></p> <p>同时我们希望看到如下输出,因为 <code>rect2</code> 的两个维度都小于 <code>rect1</code>,而 <code>rect3</code> 比 <code>rect1</code> 要宽:</p> <pre><code class="language-text">Can rect1 hold rect2? true Can rect1 hold rect3? false </code></pre> <p>因为我们想定义一个方法,所以它应该位于 <code>impl Rectangle</code> 块中。方法名是 <code>can_hold</code>,并且它会获取另一个 <code>Rectangle</code> 的不可变借用作为参数。通过观察调用方法的代码可以看出参数是什么类型的:<code>rect1.can_hold(&rect2)</code> 传入了 <code>&rect2</code>,它是一个 <code>Rectangle</code> 的实例 <code>rect2</code> 的不可变借用。这是可以理解的,因为我们只需要读取 <code>rect2</code>(而不是写入,这意味着我们需要一个不可变借用),而且希望 <code>main</code> 保持 <code>rect2</code> 的所有权,这样就可以在调用这个方法后继续使用它。<code>can_hold</code> 的返回值是一个布尔值,其实现会分别检查 <code>self</code> 的宽高是否都大于另一个 <code>Rectangle</code>。让我们在示例 5-13 的 <code>impl</code> 块中增加这个新的 <code>can_hold</code> 方法,如示例 5-15 所示:</p> <p><span class="filename">文件名:src/main.rs</span></p> <pre><pre class="playground"><code class="language-rust edition2021"><span class="boring">#[derive(Debug)] </span><span class="boring">struct Rectangle { </span><span class="boring"> width: u32, </span><span class="boring"> height: u32, </span><span class="boring">} </span><span class="boring"> </span>impl Rectangle { fn area(&self) -> u32 { self.width * self.height } fn can_hold(&self, other: &Rectangle) -> bool { self.width > other.width && self.height > other.height } } <span class="boring"> </span><span class="boring">fn main() { </span><span class="boring"> let rect1 = Rectangle { </span><span class="boring"> width: 30, </span><span class="boring"> height: 50, </span><span class="boring"> }; </span><span class="boring"> let rect2 = Rectangle { </span><span class="boring"> width: 10, </span><span class="boring"> height: 40, </span><span class="boring"> }; </span><span class="boring"> let rect3 = Rectangle { </span><span class="boring"> width: 60, </span><span class="boring"> height: 45, </span><span class="boring"> }; </span><span class="boring"> </span><span class="boring"> println!("Can rect1 hold rect2? {}", rect1.can_hold(&rect2)); </span><span class="boring"> println!("Can rect1 hold rect3? {}", rect1.can_hold(&rect3)); </span><span class="boring">}</span></code></pre></pre> <p><span class="caption">示例 5-15:在 <code>Rectangle</code> 上实现 <code>can_hold</code> 方法,它获取另一个 <code>Rectangle</code> 实例作为参数</span></p> <p>如果结合示例 5-14 的 <code>main</code> 函数来运行,就会看到期望的输出。在方法签名中,可以在 <code>self</code> 后增加多个参数,而且这些参数就像函数中的参数一样工作。</p> <h3 id="关联函数"><a class="header" href="#关联函数">关联函数</a></h3> <p>所有在 <code>impl</code> 块中定义的函数被称为 <strong>关联函数</strong>(<em>associated functions</em>),因为它们与 <code>impl</code> 后面命名的类型相关。我们可以定义不以 <code>self</code> 为第一参数的关联函数(因此不是方法),因为它们并不作用于一个结构体的实例。我们已经使用了一个这样的函数:在 <code>String</code> 类型上定义的 <code>String::from</code> 函数。</p> <p>不是方法的关联函数经常被用作返回一个结构体新实例的构造函数。这些函数的名称通常为 <code>new</code> ,但 <code>new</code> 并不是一个关键字。例如我们可以提供一个叫做 <code>square</code> 关联函数,它接受一个维度参数并且同时作为宽和高,这样可以更轻松的创建一个正方形 <code>Rectangle</code> 而不必指定两次同样的值:</p> <p><span class="filename">文件名:src/main.rs</span></p> <pre><pre class="playground"><code class="language-rust edition2021"><span class="boring">#[derive(Debug)] </span><span class="boring">struct Rectangle { </span><span class="boring"> width: u32, </span><span class="boring"> height: u32, </span><span class="boring">} </span><span class="boring"> </span>impl Rectangle { fn square(size: u32) -> Self { Self { width: size, height: size, } } } <span class="boring"> </span><span class="boring">fn main() { </span><span class="boring"> let sq = Rectangle::square(3); </span><span class="boring">}</span></code></pre></pre> <p>关键字 <code>Self</code> 在函数的返回类型中代指在 <code>impl</code> 关键字后出现的类型,在这里是 <code>Rectangle</code></p> <p>使用结构体名和 <code>::</code> 语法来调用这个关联函数:比如 <code>let sq = Rectangle::square(3);</code>。这个函数位于结构体的命名空间中:<code>::</code> 语法用于关联函数和模块创建的命名空间。<a href="ch07-02-defining-modules-to-control-scope-and-privacy.html">第七章</a>会讲到模块。</p> <h3 id="多个-impl-块"><a class="header" href="#多个-impl-块">多个 <code>impl</code> 块</a></h3> <p>每个结构体都允许拥有多个 <code>impl</code> 块。例如,示例 5-16 中的代码等同于示例 5-15,但每个方法有其自己的 <code>impl</code> 块。</p> <pre><pre class="playground"><code class="language-rust edition2021"><span class="boring">#[derive(Debug)] </span><span class="boring">struct Rectangle { </span><span class="boring"> width: u32, </span><span class="boring"> height: u32, </span><span class="boring">} </span><span class="boring"> </span>impl Rectangle { fn area(&self) -> u32 { self.width * self.height } } impl Rectangle { fn can_hold(&self, other: &Rectangle) -> bool { self.width > other.width && self.height > other.height } } <span class="boring"> </span><span class="boring">fn main() { </span><span class="boring"> let rect1 = Rectangle { </span><span class="boring"> width: 30, </span><span class="boring"> height: 50, </span><span class="boring"> }; </span><span class="boring"> let rect2 = Rectangle { </span><span class="boring"> width: 10, </span><span class="boring"> height: 40, </span><span class="boring"> }; </span><span class="boring"> let rect3 = Rectangle { </span><span class="boring"> width: 60, </span><span class="boring"> height: 45, </span><span class="boring"> }; </span><span class="boring"> </span><span class="boring"> println!("Can rect1 hold rect2? {}", rect1.can_hold(&rect2)); </span><span class="boring"> println!("Can rect1 hold rect3? {}", rect1.can_hold(&rect3)); </span><span class="boring">}</span></code></pre></pre> <p><span class="caption">示例 5-16:使用多个 <code>impl</code> 块重写示例 5-15</span></p> <p>这里没有理由将这些方法分散在多个 <code>impl</code> 块中,不过这是有效的语法。第十章讨论泛型和 trait 时会看到实用的多 <code>impl</code> 块的用例。</p> <h2 id="总结"><a class="header" href="#总结">总结</a></h2> <p>结构体让你可以创建出在你的领域中有意义的自定义类型。通过结构体,我们可以将相关联的数据片段联系起来并命名它们,这样可以使得代码更加清晰。在 <code>impl</code> 块中,你可以定义与你的类型相关联的函数,而方法是一种相关联的函数,让你指定结构体的实例所具有的行为。</p> <p>但结构体并不是创建自定义类型的唯一方法:让我们转向 Rust 的枚举功能,为你的工具箱再添一个工具。</p> </main> <nav class="nav-wrapper" aria-label="Page navigation"> <!-- Mobile navigation buttons --> <a rel="prev" href="ch05-02-example-structs.html" class="mobile-nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left"> <i class="fa fa-angle-left"></i> </a> <a rel="next prefetch" href="ch06-00-enums.html" class="mobile-nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right"> <i class="fa fa-angle-right"></i> </a> <div style="clear: both"></div> </nav> </div> </div> <nav class="nav-wide-wrapper" aria-label="Page navigation"> <a rel="prev" href="ch05-02-example-structs.html" class="nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left"> <i class="fa fa-angle-left"></i> </a> <a rel="next prefetch" href="ch06-00-enums.html" class="nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right"> <i class="fa fa-angle-right"></i> </a> </nav> </div> <script> window.playground_copyable = true; </script> <script src="elasticlunr.min.js"></script> <script src="mark.min.js"></script> <script src="searcher.js"></script> <script src="clipboard.min.js"></script> <script src="highlight.js"></script> <script src="book.js"></script> <!-- Custom JS scripts --> <script src="ferris.js"></script> </div> </body> </html>