## 什么是面向对象? > [ch17-01-what-is-oo.md](https://github.com/rust-lang/book/blob/master/second-edition/src/ch17-01-what-is-oo.md) >
> commit e7df3050309924827ff828ddc668a8667652d2fe 关于一个语言被称为面向对象所需的功能,在编程社区内并未达成一致意见。Rust 被很多不同的编程范式影响,包括面向对象编程;比如第十三章提到了来自函数式编程的特性。面向对象编程语言所共享的一些特性往往是对象、封装和继承。让我们看一下这每一个概念的含义以及 Rust 是否支持他们。 ### 对象包含数据和行为 `Design Patterns: Elements of Reusable Object-Oriented Software` 这本书被俗称为 `The Gang of Four book`,是面向对象编程模式的目录。它这样定义面向对象编程: > Object-oriented programs are made up of objects. An *object* packages both > data and the procedures that operate on that data. The procedures are > typically called *methods* or *operations*. > > 面向对象的程序是由对象组成的。一个 **对象** 包含数据和操作这些数据的过程。这些过程通常被称为 **方法** 或 **操作**。 在这个定义下,Rust 是面向对象的:结构体和枚举包含数据而 impl 块提供了在结构体和枚举之上的方法。虽然带有方法的结构体和枚举并不被 **称为** 对象,但是他们提供了与对象相同的功能,参考 Gang of Four 中对象的定义。 ### 封装隐藏了实现细节 另一个通常与面向对象编程相关的方面是 **封装**(*encapsulation*)的思想:对象的实现细节不能被使用对象的代码获取到。唯一与对象交互的方式是通过对象提供的公有 API;使用对象的代码无法深入到对象内部并直接改变数据或者行为。封装使得改变和重构对象的内部时无需改变使用对象的代码。 就像我们在第七章讨论的那样:可以使用 `pub` 关键字来决定模块、类型、函数和方法是公有的,而默认情况下其他一切都是私有的。比如,我们可以定义一个包含一个 `i32` 类型 vector 的结构体 `AveragedCollection `。结构体也可以有一个字段,该字段保存了 vector 中所有值的平均值。这样,希望知道结构体中的 vector 的平均值的人可以随时获取它,而无需自己计算。换句话说,`AveragedCollection` 会为我们缓存平均值结果。示例 17-1 有 `AveragedCollection` 结构体的定义: 文件名: src/lib.rs ```rust pub struct AveragedCollection { list: Vec, average: f64, } ``` 示例 17-1: `AveragedCollection` 结构体维护了一个整型列表和集合中所有元素的平均值。 注意,结构体自身被标记为 `pub`,这样其他代码就可以使用这个结构体,但是在结构体内部的字段仍然是私有的。这是非常重要的,因为我们希望保证变量被增加到列表或者被从列表删除时,也会同时更新平均值。可以通过在结构体上实现 `add`、`remove` 和 `average` 方法来做到这一点,如示例 17-2 所示: 文件名: src/lib.rs ```rust # pub struct AveragedCollection { # list: Vec, # average: f64, # } impl AveragedCollection { pub fn add(&mut self, value: i32) { self.list.push(value); self.update_average(); } pub fn remove(&mut self) -> Option { let result = self.list.pop(); match result { Some(value) => { self.update_average(); Some(value) }, None => None, } } pub fn average(&self) -> f64 { self.average } fn update_average(&mut self) { let total: i32 = self.list.iter().sum(); self.average = total as f64 / self.list.len() as f64; } } ``` 示例 17-2: 在`AveragedCollection` 结构体上实现了`add`、`remove` 和 `average` 公有方法 公有方法 `add`、`remove` 和 `average` 是修改 `AveragedCollection` 实例的唯一方式。当使用 `add` 方法把一个元素加入到 `list` 或者使用 `remove` 方法来删除时,这些方法的实现同时会调用私有的 `update_average` 方法来更新 `average` 字段。 `list` 和 `average` 是私有的,所以没有其他方式来使得外部的代码直接向 `list` 增加或者删除元素,否则 `list` 改变时可能会导致 `average` 字段不同步。`average` 方法返回 `average` 字段的值,这使得外部的代码只能读取 `average` 而不能修改它。 因为我们已经封装好了 `AveragedCollection` 的实现细节,将来可以轻松改变类似数据结构这些方面的内容。例如,可以使用 `HashSet` 代替 `Vec` 作为 `list` 字段的类型。只要 `add`、`remove` 和 `average` 公有函数的签名保持不变,使用 `AveragedCollection` 的代码就无需改变。相反如果使得 `list` 为公有,就未必都会如此了: `HashSet` 和 `Vec` 使用不同的方法增加或移除项,所以如果要想直接修改 `list` 的话,外部的代码可能不得不做出修改。 如果封装是一个语言被认为是面向对象语言所必要的方面的话,那么 Rust 满足这个要求。在代码中不同的部分使用 `pub` 与否可以封装其实现细节。 ## 继承,作为类型系统与代码共享 **继承**(*Inheritance*)是一个很多编程语言都提供的机制,一个对象可以定义为继承另一个对象的定义,这使其可以获得父对象的数据和行为,而无需重新定义。 如果一个语言必须有继承才能被称为面向对象语言的话,那么 Rust 就不是面向对象的。无法定义一个结构体继承父结构体的成员和方法。然而,如果你过去常常在你的编程工具箱使用继承,根据你最初考虑继承的原因,Rust 也提供了其他的解决方案。 选择继承有两个主要的原因。第一个是为了重用代码:一旦为一个类型实现了特定行为,继承可以对一个不同的类型重用这个实现。相反 Rust 代码可以使用默认 trait 方法实现来进行共享,在示例 10-15 中我们见过在 `Summarizable` trait 上增加的 `summary` 方法的默认实现。任何实现了 `Summarizable` trait 的类型都可以使用 `summary` 方法而无须进一步实现。这类似于父类有一个方法的实现,而通过继承子类也拥有这个方法的实现。当实现 `Summarizable` trait 时也可以选择覆盖 `summary` 的默认实现,这类似于子类覆盖从父类继承的方法实现。 第二个使用继承的原因与类型系统有关:表现为子类型可以用于父类型被使用的地方。这也被称为 **多态**(*polymorphism*),这意味着如果多种对象共享特定的属性,则可以相互替代使用。 > 多态(Polymorphism) > > 很多人将多态描述为继承的同义词。不过它是一个有关可以用于多种类型的代码的更广泛的概念。对于继承来说,这些类型通常是子类。Rust 则通过泛型来使得对多个不同类型的抽象成为可能,并通过 trait bounds 加强对这些类型所必须提供的内容的限制。这有时被称为 *bounded parametric polymorphism*。 近来继承作为一种语言设计的解决方案在很多语言中失宠了,因为其时常带有共享多于所需的代码的风险。子类不应总是共享其父类的多有特征,但是继承却始终如此。如此会使程序设计更为不灵活,并引入无意义的子类方法调用,或由于方法实际并不适用于子类而造成错误的可能性。某些语言还只允许子类继承一个父类,进一步限制了程序设计的灵活性。 因为这些原因,Rust 选择了一个不同的途径,使用 trait 对象替代继承。让我们看一下 Rust 中的 trait 对象是如何实现多态的。